Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow x^3+y^3-x^2y-xy^2\ge0\)
\(\Rightarrow\)\(x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)
\(\Rightarrow\)\(\left(x-y\right)\left(x+y\right)\left(x-y\right)\ge0\)
\(\Rightarrow\)\(\left(x-y\right)^2\left(x+y\right)\ge0\)( luôn đúng vì x,y ko âm nên x+y >0)(đpcm)
chúc bn hok tốt
1 ) Đề bài > not \(\ge\)
Giả sử đpcm là đúng , khi đó , ta có :
\(x^2+y^2+8>xy+2x+2y\)
\(\Leftrightarrow2x^2+2y^2+16>2xy+4x+4y\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+8>0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2+8>0\left(1\right)\)
Do \(\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2+8\ge8>0\forall x;y\left(2\right)\)
Từ ( 1 ) ; ( 2 ) => Điều giả sử là đúng => đpcm
2 ) ĐK : a ; b ; c không âm
Áp dụng BĐT phụ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) ( cái này bạn áp dụng BĐT Cô - si để c/m ) , ta có :
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{9}{a+b+b+c+c+a}=\frac{9}{6.2}=\frac{3}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=2\)
3 ) Áp dụng BĐT Cô - si cho các cặp số không âm , ta có :
\(x^2+y^2\ge2xy;y^2+z^2\ge2yz;x^2+z^2\ge2xz\)
\(\Rightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\left(1\right)\)
\(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)
\(\Rightarrow x^2+y^2+z^2+3\ge2x+2y+2z\left(2\right)\)
Từ ( 1 ) ; ( 2 ) , ta có : \(2x^2+2y^2+2z^2+x^2+y^2+z^2+3\ge2xy+2yz+2xz+2x+2y+2z\)
\(\Rightarrow3\left(x^2+y^2+z^2+1\right)\ge2\left(x+y+z+2xy+2xz+2yz\right)=2.6=12\)
\(\Rightarrow x^2+y^2+z^2+1\ge4\)
\(\Rightarrow x^2+y^2+z^2\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=z=1\)
Xét \(\dfrac{x^3+xy^2-x^2y-y^3}{x-y}-y^2\ge0\Leftrightarrow\dfrac{x\left(x^2+y^2\right)-y\left(x^2+y^2\right)}{x-y}-y^2\ge0\Leftrightarrow\dfrac{\left(x-y\right)\left(x^2+y^2\right)}{x-y}-y^2\ge0\Leftrightarrow x^2+y^2-y^2\ge0\Leftrightarrow x^2\ge0\left(đúng\right)\)
=> đpcm
\(VT=\frac{\left(x^3-x^2y\right)+\left(xy^2-y^3\right)}{x-y}=\frac{x^2\left(x-y\right)+y^2\left(x-y\right)}{x-y}=\frac{\left(x^2+y^2\right)\left(x-y\right)}{x-y}=x^2+y^2\ge y^2\)
Xét VT=\(=\frac{x^2\left(x-y\right)+y^2\left(x-y\right)}{x-y}\\ =\frac{\left(x^2+y^2\right)\left(x-y\right)}{x-y}\\ =x^2+y^2\ge y^2\)
Dấu "=" xảy ra khi x=0
\(VT=\left(\frac{1}{x^3+y^3+xy\left(x+y\right)}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)
\(\ge\frac{4}{x^3+y^3+xy\left(x+y\right)+2xy\left(x+y\right)}+2+\frac{5}{\left(x+y\right)^2}=11\)
Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)
Ta có:
\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{1}{a+b}\) với a,b dương
Do x+y=1 nên ta có:
\(A=\frac{1}{x^3+xy+y^3}+\frac{4y^2x^2+2}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)
Ta có:
\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}=4\)
Ta sử dung bđt \(\frac{a}{b}+\frac{b}{a}\ge2\left(a,b>0\right)\)thì \(4xy+\frac{1}{4xy}=\frac{4xy}{1}+\frac{1}{4xy}\ge2\)
Mặt khác
\(1=\left(x+y\right)^2\ge4xy\Rightarrow xy\le\frac{1}{4}\Rightarrow\frac{5}{4xy}\ge5\)Nên ta suy ra:
\(A=\frac{1}{x^3+xy+y^3}+\frac{4y^2x^2+2}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\ge4+2+5=11\)
Dấu "=" xảy ra khi và chỉ khi x=y=\(\frac{1}{2}\)
Câu b) x/y + y/x >hoặc = 2
<=> x/y + y/x - 2 > hoặc = 0
<=> x^2 + y^2 -2xy /xy >hoặc =0
<=> (x-y)^2 /xy > hoặc = 0
(x-y)^2 > hoặc = 0 với mọi x;y .Dấu"=" xảy ra khi x=y
vì x;y cùng dấu =>xy>0
=>(x-y)^2 / xy > hoặc = 0 luôn luôn đúng.
Mà các Phép biến đổi trên là tương đương
=>x/y + y/x >hoặc =2 với mọi x;y cùng dấu. Dấu "=" xảy ra khi x=y. Nhớ nhé
Câu g) a^2 + b^2 > hoặc =1/2 với a+b=1
vì a+b=1 =>(a+b)^2 = 1 =>(1*a+1*b)^2 =1
Áp dụng bất đẳng thức Bunhiacốpski cho 4 số 1;1;a;b ta có
(1*a+1*b)^2 < hoặc = (1^2 + 1^2 )(a^2 + b^2).Dấu "=" xảy ra khi 1^2 / a^2 = 1^2 /b^2 =>1/a = 1/b=>a=b=1/2
Hay 1< hoặc = 2(a^2 +b^2) .Dấu "=" xảy ra khi a=b=1/2
=>a^2 + b^2 > hoặc = 1/2.Dấu "=" xảy ra khi a=b=1/2 =>đpcm
Ta có:
\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2-2xy\ge0\)
\(\Leftrightarrow x^2+y^2-xy\ge xy\)
\(\text{Do: }x\ge0;y\ge0\)
\(\Rightarrow x+y\ge0\)
Ta có:
\(\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)xy\)
\(\Leftrightarrow x^3+y^2\ge x^2y+xy^2\left(đ\text{pcm}\right)\)
mk bổ sung thêm đề nhé: x,y > 0
cách khác:
\(x^3+y^3\ge x^2y+xy^2\)
\(\Leftrightarrow\)\(x^3+y^3-x^2y-xy^2\ge0\)
\(\Leftrightarrow\)\(x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow\)\(\left(x-y\right)\left(x^2-y^2\right)\ge0\)
\(\Leftrightarrow\)\(\left(x-y\right)^2\left(x+y\right)\ge0\) luôn đúng do (x-y)2 >= 0; x+y > 0 (x,y>0)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)