K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
K
2
Các câu hỏi dưới đây có thể giống với câu hỏi trên
UN
1
18 tháng 6 2018
Áp dụng bđt AM-GM:
\(x^2+\dfrac{1}{x}\ge2\sqrt{x}\)
\(y^2+\dfrac{1}{y}\ge2\sqrt{y}\)
Cộng theo vế: \(VT=x^2+y^2+\dfrac{1}{x}+\dfrac{1}{y}\ge2\left(\sqrt{x}+\sqrt{y}\right)=VP\)
\("="\Leftrightarrow x=y=1\)
D
1
T
5 tháng 7 2019
Em thử nhá!Ngồi nãy giờ mới tìm được cách ghép-_-" Mà cũng ko chắc đâu..
Theo đề bài dễ thấy x;y >= z
\(BĐT\Leftrightarrow\sqrt{\frac{z}{y}.\frac{x-z}{x}}+\sqrt{\frac{z}{x}.\frac{y-z}{y}}\le1\)
Áp dụng BĐT Cauchy: \(VT\le\frac{1}{2}\left(\frac{z}{y}+\frac{x-z}{x}+\frac{z}{x}+\frac{y-z}{y}\right)=\frac{1}{2}.2=1^{\left(đpcm\right)}\)
PD
0
Áp dụng bđt cô-si dạng engel:
\(\sqrt{x}+\sqrt{y}\ge\sqrt{x+y}\)
Vậy đẳng thức chỉ xảy ra khi x ; y \(\ge0\)( đpcm )
Chúc bạn học tốt!
Ta có :
\(\sqrt{x}+\sqrt{y}\ge\sqrt{x+y}\)
\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}\ge0\\\sqrt{x+y}\ge0\end{cases}}\)
\(\Rightarrow\)\(\left(\sqrt{x}+\sqrt{y}\right)^2\ge\left(\sqrt{x+y}\right)^2\)
\(\Leftrightarrow\)\(x+2\sqrt{x}\sqrt{y}+y\ge x+y\)
\(\Leftrightarrow\)\(2\sqrt{x}\sqrt{y}\ge0\) ( luôn đúng với mọi \(x,y\ge0\) )
Vậy \(\sqrt{x}+\sqrt{y}\ge\sqrt{x+y}\) với \(x,y\ge0\)
Chúc bạn học tốt ~