Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(K=1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2020}\)
\(=1+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+...+\frac{1}{\frac{2020.2021}{2}}\)
\(=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2020.2021}\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2020}-\frac{1}{2021}\right)\)
\(=2\left(1-\frac{1}{2021}\right)=2.\frac{2020}{2021}=\frac{4040}{2021}\)
\(\Rightarrow D=\frac{2020}{\frac{4040}{2021}}=\frac{2021}{2}\)
\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+....+\frac{1}{2020}\left(1+2+3+...+2020\right)\)
\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+....+\frac{1}{2020}.\frac{2020.2021}{2}\)
\(=1+\frac{3}{2}+\frac{4}{2}+....+\frac{2021}{2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+....+\frac{2021}{2}\)
\(=\frac{\left[\left(2021-2\right)+1\right]\left(2021+2\right)}{2}:2\)
\(=1021615\)
Gọi biểu thức là A
3A= \(1+\frac{1}{3}+...+\frac{1}{3^{2019}}\)
⇒ 3A-A=2A=\(1+\frac{1}{3}+...+\frac{1}{3^{2019}}\)-\(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2020}}\)
⇒ 2A=1-\(\frac{1}{3^{2020}}\)
⇒ A= \(\frac{1}{2}-\frac{1}{3^{2020}.2}\)
⇒ A< \(\frac{1}{2}\)
Lời giải:
Đặt: \(\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{2019^2}=a\).
Biểu thức $A$ lúc đó được biểu diễn như sau:
\(A=a(a-1+\frac{1}{2020^2})-(a+\frac{1}{2020^2})(a-1)\)
\(=a(a-1)+\frac{a}{2020^2}-[a(a-1)+\frac{a-1}{2020^2}]\)
\(=\frac{1}{2020^2}\)
Đặt \(A=1-\frac{1}{2^2}-\frac{1}{3^2}-.........-\frac{1}{2020^2}\)
Ta có: \(2^2=2.2< 2.3\)\(\Rightarrow\frac{1}{2.2}>\frac{1}{2.3}\)\(\Rightarrow\frac{1}{2^2}>\frac{1}{2.3}\)
Tương tự, ta có: \(\frac{1}{3^2}>\frac{1}{3.4}\), ........... , \(\frac{1}{2020^2}>\frac{1}{2020.2021}\)
\(\Rightarrow A>1-\frac{1}{2.3}-\frac{1}{3.4}-...........-\frac{1}{2020.2021}\)
\(=1-\left(\frac{1}{2}-\frac{1}{3}\right)-\left(\frac{1}{3}-\frac{1}{4}\right)-.......-\left(\frac{1}{2020}-\frac{1}{2021}\right)\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{4}-..........-\frac{1}{2020}+\frac{1}{2021}\)
\(=1-\frac{1}{2}+\frac{1}{2021}\)\(=\frac{1}{2}+\frac{1}{2021}=\frac{2023}{4042}>\frac{1}{2020}\)
\(\Rightarrow A>\frac{1}{2020}\)