Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gỉa sử n2+2014 là số chính phương.Đặt n2+2014=a2
=>2014=a2-n2
=>2014=(a-n).(a+n)
=>(a-n).(a+n) chia hết cho 2 mà 2 là số nguyên tố
=>a-n hoặc a+n chia hết cho 2
Mà a-n+a+n=2a chia hết cho 2
=>a-n và a+n đều chia hết cho 2
=>(a-n).(a+n) chia hết cho 4 hay 2014 chia hết cho 4
Mà 2014 không chia hết cho 4
=>Không tìm được n thỏa mãn hay n2+2014 không phải số chính phương với n nguyên dương.
Vậy n2+2014 không phải số chính phương với n nguyên dương.
a) Nếu n2+2014 là số chính phương với n nguyên dương thì n2 + 2014 = k2 → k2 – n2 = 2014
=> (k – n)(k + n) = 2014 (*)
Vậy (k + n) – (k – n) = 2n là số chẵn nên k và n phải cùng chẵn hoặc cùng lẻ.
Mặt khác (k – n)(k + n) = 2014 là chẵn
Nên (k – n), (k + n) đều chia hết cho 2 hay (k – n)(k + n) chia hết cho 4
Mà 2014 không chia hết cho 4
Suy ra đẳng thức (*) không thể xảy ra.
Vậy không có số nguyên dương n nào để số n2 + 2014 là số chính phương
b) Với 2 số a, b dương:
Xét: a2 + b2 – ab ≤ 1
<=> (a + b)(a2 + b2 – ab) ≤ (a + b) (vì a + b > 0)
<=> a3 + b3 ≤ a + b
<=> (a3 + b3)(a3 + b3) ≤ (a + b)(a5 + b5) (vì a3 + b3 = a5 + b5)
<=> a6 + 2a3b3 + b6 ≤ a6 + ab5 + a5b + b6
<=> 2a3b3 ≤ ab5 + a5b
<=> ab(a4 – 2a2b2 + b4) ≥ 0
<=> ab(a2 - b2) ≥ 0 đúng ∀ a, b > 0 .
Vậy: a2 + b2 ≤ 1 + ab với a, b dương và a3 + b3 = a5 + b5
Vì n là số nguyên dương nên :
\(2n+1>n+1>0\)
\(\Rightarrow n^2+2n+1>n^2+n+1>n^2\)
\(\Leftrightarrow\left(n+1\right)^2>n^2+n+1>n^2\)
Do n là số nguyên dương nên :(n+1)2 và n2 là 2 số chính phương liên tiếp
Theo t/c kẹp giữa của số chính phương suy ra: n2+n+1 không phải số chính phương
a) Nếu n2+2014 là số chính phương với n nguyên dương thì n2 + 2014 = k2 → k2 – n2 = 2014
→ (k – n)(k + n) = 2014 (*)
Vậy (k + n) – (k – n) = 2n là số chẵn nên k và n phải cùng chẵn hoặc cùng lẻ.
Mặt khác (k – n)(k + n) = 2014 là chẵn
Nên (k – n), (k + n) đều chia hết cho 2 hay (k – n)(k + n) chia hết cho 4
Mà 2014 không chia hết cho 4
Suy ra đẳng thức (*) không thể xảy ra.
Vậy không có số nguyên dương n nào để số n2 + 2014 là số chính phương
b) Với 2 số a, b dương:
Xét: a2 + b2 – ab ≤ 1
↔ (a + b)(a2 + b2 – ab) ≤ (a + b) (vì a + b > 0)
↔a3 + b3 ≤ a + b
↔ (a3 + b3)(a3 + b3) ≤ (a + b)(a5 + b5) (vì a3 + b3 = a5 + b5)
↔ a6 + 2a3b3 + b6 ≤ a6 + ab5 + a5b + b6
↔ 2a3b3 ≤ ab5 + a5b
↔ ab(a4 – 2a2b2 + b4) ≥ 0
↔ ab(a2 - b2) ≥ 0 đúng ∀ a, b > 0 .
Vậy: a2 + b2 ≤ 1 + ab với a, b dương và a3 + b3 = a5 + b5
a)Giả sử n2+2014 là số chính phương với n nguyên dương thì n2 + 2014 = k2
=> k2 – n2 = 2014
=> (k – n)(k + n) = 2014 (1)
Mà (k + n) – (k – n) = 2n là số chẵn nên k và n phải cùng chẵn hoặc cùng lẻ.
Mặt khác (k – n)(k + n) = 2014 là chẵn
Nên (k – n), (k + n) đều chia hết cho 2 hay (k – n)(k + n) chia hết cho 4
Mà 2014 không chia hết cho 4
Suy ra đẳng thức (1) không thể xảy ra.
Vậy không có số nguyên dương n nào để số n2 + 2014 là số chính phương
b) Ta có : 2 số a, b dương:
Xét: a2 + b2 – ab ≤ 1
<=> (a + b)(a2 + b2 – ab) ≤ (a + b) (vì a + b > 0)
<=>a3 + b3 ≤ a + b
<=> (a3 + b3)(a3 + b3) ≤ (a + b)(a5 + b5) (vì a3 + b3 = a5 + b5)
<=> a6 + 2a3b3 + b6 ≤ a6 + ab5 + a5b + b6
<=> 2a3b3 ≤ ab5 + a5b
<=> ab(a4 – 2a2b2 + b4) ≥ 0
<=> ab(a2 - b2) ≥ 0 đúng với mọi a, b > 0 .
Vậy: a2 + b2 ≤ 1 + ab với a, b dương và a3 + b3 = a5 + b5
đặt A2=n2+n+6
=>4A2=4n2+4n+24
=(2n+1)2+23
<=>(2A-2n-1)(2A+2n+1)=23
=>x=....
Đặt : A2 = n2 + n + 6
=> 4A2 = 4n2 + 4n + 24
= ( 2n + 1 )2 + 23
<=> ( 2A - 2n - 1 ) ( 2A + 2n + 1 )
= 23
Suy ra: x = 23
Trước hết ta thấy 2014 chia 4 dư2
n^2 chia 4 dư 0 hoặc 1
Suy ra n^2+2014 chia 4 dư 2 hoặc 3.Mà số chính phương chỉ có số dư là 1 hoặc 0 khi chia cho 4 nên n^2+2014 ko phải số chính phương
Ta có điều phải chứng minh.
Chọn đúng cho mình nha
thám tử lừng danh