Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1-3+32-...+398-399
=(1-3+32-33)+...+(396-397+398-399)
=-20+...+396.(-20)
=-20.(1+....+396)
nên S chhia hết cho(-20) (đpcm)
=>(1-3+32-33)+...+(396-397+398-399)
=> -20+...+396.(-20)
=>-20.(1+....+396)
Nên S chhia hết cho(-20) (đpcm)
tick nhé
Đay là theo bài làm của cô Trần Thị Loan , bạn kham khảo nhé !
a) Cho A=3+ 32+33+...+31998 . chứng minh A chia hết cho 12 và 39.
b) Cho B=3 + 32+ 33+...+31000. chứng minh B chia hết cho 120.
a) A luôn chia hết cho 3
A = (3 + 32) + (33 + 34) + ...+ (31997 + 31998) = 3.(1 + 3) + 33.(1 + 3) + ...+ 31997.(1 + 3) = 4.(3 + 33 + ...+ 31997)
=> A chia hết cho 4 ; A chia hết cho 3 => A chia hết cho 12
A = (3 + 32 + 33) + ...+ (31996 + 31997 + 31998) = 3.(1 + 3 + 32) + ...+ 31996.(1 + 3+ 32) = 13.(3 + 34 + ...+ 31996)
=> A chia hết cho 13. A chia hết cho 3 => A chia hết cho 39
b) A = (3 + 32 + 33 + 34) + ..+ (3997 + 3998 + 3999 + 31000)
A = 3.(1 + 3 + 32 + 33) + ...+ 3997.(1 + 3 + 32 + 33) = 40.(3 + ...+ 3997)
=> A chia hết cho 40 ; A chia hết cho 3
=> A chia hết cho 40.3 = 120
Vậy...
2.
Ta có: abcabc=abc.1001. Mà 1001 chia hết cho 7;11;13 => abc.1001 chia hết cho 7;11;13 là 3 số nguyên tố hay abcabc chia hết cho 3 số nguyên tố 7;11;13(ĐPCM)
3.
Với p thuộc N thì p có 1 trong 3 dạng sau : 3k ; 3k+1 ; 3k+2.
Nếu p=3k thì p chia hết cho 3 và p>3 => p không phải là sô nguyên tố (không t/m đề ra)
Nếu p=3k+2 thì p+4=3k+2+4=3k+6 chia hết cho 3=> p+4 chia hết cho 3 và p+4>3 (vì p>3) =>p+4 không phải là số nguyên tố (không t/m đề ra)
Vậy p=3k+1 (t/m)
Do p=3k+1 nên p+8=3k+1+8=3k+9. Mà 3k+9 chia hết cho 3 => p+8 chia hết cho 3 và p+8>3 (do p>3) => p+8 là hợp số (ĐPCM)
Bạn nên ghi rõ đề bài 1 nha. Chúc bạn học tốt.
a) \(1+2+...+2^{2011}\)
\(=2^0+2+...+2^{2010}+2^{2011}\)
\(=2^0\left(1+2\right)+...+2^{2010}\left(1+2\right)\)
\(=2^0\cdot3+...+2^{2010}\cdot3\)
\(=3\left(2^0+...+2^{2010}\right)⋮3\left(đpcm\right)\)
Các câu còn lại tương tự, dài quá
a) Dãy trên có : 2012 lũy thừa và 2012 \(⋮\)2 =< có thể ghpes thành các nhóm, mỗi nhóm 2 lũy thừa.
Ta có :
A = ( 1 + 2 ) + ( 22 + 23 ) + ...+( 22010 + 22011 )
=> A = 3 + 22 . ( 1 + 2 ) +...+ 22010. ( 1 + 2 )
=> A = 3 . ( 1 + 22 +...+ 22010 ) => A chia hết cho 3
- Để chứng minh chia hết cho 5 thì ghép 4 cái liền. ( làm tương tự trên )
b,
Ta có :
B = 1 + 7 +...+ 7101
=> B = ( 1 + 72 ) + ( 7 + 73 ) +...+ ( 799 + 7101 )
=> B = 50 + 72.( 1 + 72 ) +...+ 799. ( 1 + 72 )
=> B = 50 + 72.50 +...+799.50
=> B = 50.( 1 + 72 +...+ 799 ) => B chia hết cho 50
Dưới tương tự...
Ta có S=1+3+3^2+...+3^2011 chia hết cho 4
=(1+3)+(3^2+3^3)+...+(3^2010+3^2011)
=1.(1+3)+3^2.(1+3)+...+3^2010.(1+3)
=1.4+3^2 .4+...+3^2010 .4
=4.(1+3^2+...+3^2010) chia hết cho 4
Vậy: S chia hết cho 4