K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2015

Ta có S=1+3+3^2+...+3^2011 chia hết cho 4

            =(1+3)+(3^2+3^3)+...+(3^2010+3^2011)

             =1.(1+3)+3^2.(1+3)+...+3^2010.(1+3)

             =1.4+3^2 .4+...+3^2010 .4

              =4.(1+3^2+...+3^2010) chia hết cho 4

           Vậy: S chia hết cho 4

           

16 tháng 11 2014

2013+2012^2(1+2012)+.......................+2011^6(1+2012) TA THẤY MOI SO DAU CO THUA SO 2012 +1 =2013 VAY NÓ CHIA HET CHO 13

16 tháng 11 2014

1+2011=2012

VẦY TA CÓ 2011+1 + 2011^2+2011^2 X2011  +.......................2011^6 +2011^6 X 2011 SUUY RA 2012+2011^2(1+2011)+..........................+2016^6(1+2011)=(2011+1) X ( 2011^2+...............+2016^6) =2012(2011^2+...............+2016^6) TA THẤY 2012 CHIA HẾT CHO 2012 VẬY TỔNG NÀY CHIA HẾT CHO 2012

24 tháng 1 2016

S=1-3+32-...+398-399

=(1-3+32-33)+...+(396-397+398-399)

=-20+...+396.(-20)

=-20.(1+....+396)

nên S chhia hết cho(-20) (đpcm) 

24 tháng 1 2016

=>(1-3+32-33)+...+(396-397+398-399)

=> -20+...+396.(-20)

=>-20.(1+....+396)

Nên S chhia hết cho(-20) (đpcm) 

tick nhé

14 tháng 12 2015

M=(2010+2010^2)+(2010^3+2010^4)+(2010^5+2010^6)+2010^7+1

=2010x2011+2010^3x2011+2010^5x2011+2010^7+1

=2011x(2010+2010^3+2010^5)+2010^7+1

mà 2010^6 đồng dư với 1 (mod 2011) nen 2010^6 x 2010 dong du voi 2010(mod 2011)

nên 2010^6 x 2010 +1 đồng dư với 2011 (mod 2011) nên 2010^7 +1 chia hết cho 2011 vậy m chia hết cho 2011

14 tháng 12 2015

ai ủng hộ vài li-ke để lên hạng 3 đi ( tui sẽ trả li-ke lại )