Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 20+ 21+22+...+22010
A= 20+ 21+22+...+22010
2A= 2( 20+ 21+22+...+22010)
2A= 21+22+...+22010+22011
2A-A= (21+22+...+22010+22011) -(20+ 21+22+...+22010)
A= 22011-20
A= 22011-1
Vì 22011 > 22010 nên 22011 -1 > 22010-1
Vậy..
c)1030 = ( 103 )10 = 100010
= ( 210 )10 = 102410
Vì 1024 > 1000
=> 100010 < 102410 hay 1030 < 2100
a) A= 1/2010+1+2/2009+1+3/2008+1+...+2009/2+1+1
= 2011/2010+20011/2009+2011/2008+...+2011/2+2011/2011
= 2011(1/2+1/3+1/4+...+1/2011)
Ta có: B= 1/2+1/3+1/4+...+1/2011
suy ra A/B= 2011
\(B=\left(1-\frac{1}{2010}\right)x\left(1-\frac{2}{2010}\right)x\left(1-\frac{3}{2010}\right)x...x\left(1-\frac{2011}{2010}\right)\)
\(B=\left(1-\frac{1}{2010}\right)x\left(1-\frac{2}{2010}\right)x\left(1-\frac{3}{2010}\right)x....x\left(1-\frac{2010}{2010}\right)x\left(1-\frac{2011}{2010}\right)\)
\(B=\left(1-\frac{1}{2010}\right)x\left(1-\frac{2}{2010}\right)x\left(1-\frac{3}{2010}\right)x...x\left(0\right)x\left(1-\frac{2011}{2010}\right)\)
\(B=0\)
\(A=\frac{2010}{1}+\frac{2009}{2}+...+\frac{2}{2009}+\frac{1}{2010}\)
\(A=1+\left(\frac{2009}{2}+1\right)+...+\left(\frac{2}{2009}+1\right)+\left(\frac{1}{2010}+1\right)\)
\(A=\frac{2011}{2011}+\frac{2011}{2}+...+\frac{2011}{2009}+\frac{2011}{2010}\)
\(A=\frac{2011}{2}+...+\frac{2011}{9}+\frac{2011}{10}+\frac{2011}{11}\)
\(A=2011.\left(\frac{1}{2}+...+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}\right)\)
\(A=2011.B\)
Nên : \(\frac{A}{B}=\frac{2011.B}{B}=2011\)
Vậy \(\frac{A}{B}=2011\)
Tham khảo nha !!! Chúc bạn học tốt !!!
Ta có:\(\left(1-\dfrac{1}{2010}\right)\left(1-\dfrac{2}{2010}\right)\left(1-\dfrac{3}{2010}\right)...\left(1-\dfrac{2010}{2010}\right)\left(1-\dfrac{2011}{2010}\right)\)
=\(\left(1-\dfrac{1}{2010}\right)\left(1-\dfrac{2}{2010}\right)\left(1-\dfrac{3}{2010}\right)....\)0\(\left(1-\dfrac{2011}{2010}\right)=0\)
A=(2+22)+(23+24)+...+(22009+22010)
A=2(1+2)+23(1+2)+...+22009(1+2)
A=2.3+23.3+...+22009.3
A=3(2+23+...+22009) chia hết cho 3
\(A=2^1+2^2+...+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+\left(2^5+2^6\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+2^5\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=2.3+2^3.3+2^5.3+...+2^{2009}.3\)
\(A=3.\left(2+2^3+2^5+...+2^{2009}\right)\)\(⋮\)\(3\)
\(\Rightarrow A⋮3\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+\left(2^7+2^8+2^9\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2+4\right)+2^4\left(1+2+4\right)+2^7\left(1+2+4\right)+...+2^{2008}\left(1+2+4\right)\)
\(A=2.7+2^4.7+2^7.7+...+2^{2008}.7\)
\(A=7.\left(2+2^4+2^7+...+2^{2008}\right)\)\(⋮\)\(7\)
\(\Rightarrow A⋮7\)
\(B=3^1+3^2+...+3^{2010}\)
\(B=\left(3^1+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+...+\left(3^{2009}+3^{2010}\right)\)
\(B=3\left(1+3\right)+3^3\left(1+3\right)+3^5\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(B=3.4+3.3^3+3.3^5+...+3^{2009}.4\)
\(B=4.\left(3+3^3+3^5+...+3^{2009}\right)\)\(⋮\)\(4\)
\(\Rightarrow B⋮4\)
\(B=3^1+3^2+...+3^{2010}\)
\(B=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\)
\(B=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^7\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)
\(B=3.13+3^4.13+3^7.13+...+3^{2008}.13\)
\(B=13.\left(3+3^4+3^7+...+3^{2008}\right)\)\(⋮\)\(13\)
\(\Rightarrow B⋮13\)