\(4x^2-3x+\frac{1}{4x}\ge0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

Thay x=2 vào biểu thức

\(x^3+4x^2-3x-18=2^3+4.2^2-3.2-18=8+16-6-18=0\)

Do x=2 cho ta \(x^3+4x^2-3x-18=0\) nên với mọi x lớn hơn hoặc bằng 2 ta luôn thu đc biểu thức lớn hơn hoặc bằng 0

29 tháng 7 2017

\(x^3+4x^2-3x-18\ge0\)

\(\Leftrightarrow x^3+6x^2+9x-2x^2-12x-18\ge0\)

\(\Leftrightarrow x\left(x^2+6x+9\right)-2\left(x^2+6x+9\right)\ge0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+6x+9\right)\ge0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)^2\ge0\)

Từ \(\left\{{}\begin{matrix}x\ge2\Rightarrow x-2\ge0\\\left(x+3\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-2\right)\left(x+3\right)^2\ge0\forall x\ge2\) (Đúng !!)

\(a,5-3x\ge0\)

\(\Rightarrow-3x\ge-5\)

\(\Rightarrow x\le\frac{5}{3}\)

\(b,2-4x\le0\)

\(\Rightarrow-4x\le-2\)

\(\Rightarrow x\ge\frac{2}{4}\)

\(\Rightarrow x\ge\frac{1}{2}\)

\(c,4x-7\ge0\)

\(\Rightarrow4x\ge7\)

\(\Rightarrow x\ge\frac{7}{4}\)

5 tháng 12 2018

\(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\frac{2\left(2-x\right)}{x+2}\)

\(=\frac{5}{4}.\frac{-2}{1}=\frac{-10}{4}\)

14 tháng 12 2018

\(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x^2+x}\)

b, \(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{y^2-xy-xy+x^2}{\left(xy-x^2\right)\left(y^2-xy\right)}=\frac{x^2+y^2}{xy^3-xyxy-xyxy+x^3y}\)Tu rut gon tiep

c, tt

d, cx r

14 tháng 12 2018

a) \(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}\)

\(=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)

b) \(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{1}{x\left(y-x\right)}-\frac{1}{y\left(y-x\right)}\)

\(=\frac{y}{xy\left(y-x\right)}-\frac{x}{xy\left(y-x\right)}=\frac{y-x}{xy\left(y-x\right)}=\frac{1}{xy}\)

c) \(\frac{9x-3}{4x-1}-\frac{3x}{1-4x}=\frac{9x-3}{4x-1}+\frac{3x}{4x-1}\)

\(=\frac{9x-3+3x}{4x-1}=\frac{6x-3}{4x-1}\)

5 tháng 12 2016

\(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}\)

\(=\frac{1-4x^2}{x^2+4x}.\frac{3x}{x-4x}\)

=\(\frac{\left(1-4x^2\right)3x}{\left(x^2+4x\right)\left(2-4x\right)}=\frac{3x-12x^3}{2x^2-4x^3+8x-16x^2}\)

5 tháng 12 2016

Thuc hien phep tinh giup minh

 

 

a: \(-3x^2\ge0\)

\(\Leftrightarrow x^2< =0\)

=>x=0

b: \(\dfrac{-5}{4x^2}\ge0\)

\(\Leftrightarrow4x^2< 0\)(vô lý)

c: \(\dfrac{4}{x+3}>=0\)

=>x+3>0

hay x>-3

d: \(\dfrac{-5}{2x-1}>=0\)

=>2x-1<0

hay x<1/2

e: \(\dfrac{-2}{x^2+1}>=0\)

=>x2+1<0(vô lý)

f: \(\dfrac{10}{x^2+9}>=0\)

=>x2+9>0(luôn đúng)