Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2+y^2\ge2xy\)
\(\sqrt{x^2+y^2}\ge\sqrt{\frac{\left(x+y\right)^2}{2}}=\frac{\sqrt{2}}{2}\left(x+y\right)\)
Do các vế của BĐT đều dương, nhân vế với vế:
\(\left(x^2+y^2\right)\sqrt{x^2+y^2}\ge\sqrt{2}xy\left(x+y\right)\) (đpcm)
Dấu "=" xảy ra khi \(x=y\)
2/ \(3\sqrt[3]{\left(x+y\right)^4\left(y+z\right)^4\left(z+x\right)^4}=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(\ge6\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{xyz}\)
\(\ge6.\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\sqrt[3]{xyz}\)
\(\ge\frac{16}{3}\left(x+y+z\right)3\sqrt[3]{x^2y^2z^2}\sqrt[3]{xyz}=16xyz\left(x+y+z\right)\)
3/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-x}\le\sqrt{x}\\2\sqrt{xy-x}+\sqrt{x}=1\end{cases}}\)
Dễ thấy
\(\hept{\begin{cases}0\le x\le1\\y\ge1\end{cases}}\)
Từ phương trình đầu ta có:
\(\sqrt{x}-\sqrt{xy}\ge\sqrt{1-x}\ge0\)
\(\Leftrightarrow y\le1\)
Vậy \(x=y=1\)
VẬy bạn giải ra cho mọi người xem được ko?
Lớn hơn hoặc bằng kí hiệu trong Latex là \geq nha!
= \(\sqrt{\dfrac{xy^2\left(x+y\right)\left(x-y\right)}{xy^3\left(x+y\right)\left(x-y\right)}}\)
=\(\sqrt{\dfrac{xy^2}{xy^3}}\)
=\(\sqrt{\dfrac{1}{y}}\)
A là bình phương thiếu một hiệu trong hằng đẳn thức số 7 nó luôn lớn hơn 0
B thì 2 bình phương luôn lớn hơn bằng 0 nếu x thỏa mãn làm (2x - 1)^2 lớn hơn bằng 0 thì thỏa mã làm cho x + 2 lớn hơn 0
2 cái + lại lớn hơn ko