K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2023

Vì p là số nguyên tố , p > 3

nên p = 3k + 1 hoặc p = 3q + 2 (k;q \(\inℕ^∗\)  )

Với p = 3k + 1 

thì 8p2 + 1 = 8.(3k + 1)2 + 1 = 8.(9k2 + 6k + 1) + 1

= 72k2 + 48k + 9 = 3(24k2 + 16k + 3) \(⋮3\)

=> 8p2 + 1 là hơp số (loại)

Với p = 3q + 2 

8p2 + 1 = 8(3q + 2)2 + 1 = 72q2 + 96q + 33 \(⋮3\)

=> p = 3q + 2 (loại) 

Vậy không tồn tại p để thỏa mãn điều kiện đề bài 

12 tháng 1 2018

Nếu p = 3 suy ra 8p - 1 = 23 là số nguyên tố ; 8p + 1 = 25 là hợp số ( thoả mãn đề bài )

Nếu p \(\ne\)3 ta có :

p - 1 ; p ; p + 1 là ba số nguyên liên tiếp nên phải có một số chia hết cho 3 

Mà p \(\ne\)3 nên p - 1 hoặc p + 1 chia hết cho 3 suy ra (p-1).(p+1) \(⋮\)3

Suy ra : (8p-1).(8p+1) = 64\(p^2\)- 1 = 63\(p^2\)\(p^2\)- 1 = 3.21.\(p^2\)+ (p-1).(p+1) \(⋮\)

Vậy 8p+1 là hợp số 

11 tháng 11 2014

A , p là ; snt lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2


 xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI


xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)


vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số


do đó 4p + 1 là hợp số ( đpcm)


B ,  nếu p = 3k+1 thì 8p+1 = 8(3k+1)+1 = 24k + 8 +1 =24k+9 (chia hết cho 3 nên là hợp số) LOẠI


nếu  p = 3k + 2 thì 8p + 1 =8(3k+2) +1 =24k + 16 +1 =24k+17(là snt theo đề bài ) ta chọn t/ hợp này


vậy 4p +1 sẽ bằng 4(3k+2)+1 = 12k + 8 +1 =12k+9 (luân chia hết cho 3) nên là hợp số


chứng tỏ 4p+1 là hợp số (đpcm)

16 tháng 4 2016

Vì a và p là số nguyên tố lớn hơn 3 nên p sẽ có dạng : 3k+1

Nếu p= 3k+1 ta có 2p+1= 2(3k+1)+1= 6k+2+1=6k+2 là hợp số   (LOẠI)

VẬY ......................

22 tháng 10 2016

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.

+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+Vậy p có dạng 3k+2

Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.

Vậy 4p+1 là hợp số,

22 tháng 10 2016

cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số  b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.

+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+Vậy p có dạng 3k+2

Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.

Vậy 4p+1 là hợp số,