Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
25*3 thay bằng các chữ số 2, 5 để 25*3 chia het cho 3 va ko chia het cho 9
có \(2+5+x+3⋮3\)
=>x=2;5;8
mà\(2+5+x+3\)không chia hết cho 9
=>x=2;5
a,4n-5 chia hết cho n-7
=>4n-28+33 chia hết cho n-7
=>4(n-7)+33 chia hết cho n-7
=>33 chia hết cho n-7<=>n-7 \(\in\)Ư(33)
=>n-7 \(\in\) {-33;-11;-3;-1;1;3;11;33}
=>n-7 \(\in\) {-26;-4;4;6;8;10;18;40}
những câu sau làm tương tự
**** mik nha
bạn cứ lấy các thừa số ra lũy thừa rồi lấy số mũ nhỏ nhất có chung rồi nhân lại ra kết quả thế là xong mk làm cho bn 1 câu mẫu nhé . nếu không có lũy thừa nào chung thì ƯCLN sẽ bằng 1 nhá
a, 16= 24
32 = 25
112= 24. 7
=) ƯCLN (16,32,112) = 1 vì không có lũy thừa nào chung nên ƯCLN = 1
học tốt nhé ^.^ hihi
a, ucln là 16
b, ucln là 2
c, ucln là 5
d, ucln là 3
e, ucln là 3
Trả lời :
Cho A = 3+32+33+34+...+3903+32+33+34+...+390 . Chứng minh rằng A chia hết cho 11 và 13
Bài làm:
Ta có : A = (3+32+33+34+35)+...+(386+387+388+389+390)
= 3(1+3+32+33+34)+...+386(1+3+32+33+34)
= 3 . 121 + 36 . 121 + ... + 386 . 121
= 3 . 11 . 11 + 36 . 11 . 11 + ... + 386 . 11 . 11 ⋮ 11
⇒ A ⋮11
A = ( 3+32+33)+(34+35+36)+...+(388+389+390)
= 3(1+3+32) + 34(1+3+32) + ... + 388(1+3+32)
= 3 . 13 + 34 . 13 + ... + 388 . 13 ⋮13
⇒ A ⋮ 13
Vậy A chia hết cho 11 và 13
Hok_Tốt
#Thiên_Hy
gọi b là thương của a và 18 ta có
a:b =18 (dư 6)
=>a:b=3.6 (dư 6)
=> a=b.3.6+6
b.3.6 chia hết cho 6
6 chia hết cho 6
=> b.3.6+6 chia hết cho 6