Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét p=2=>2p+1=5;8p2+1=33 loại
xét p=3:
=>2p+1=7;8p2+1=73 t/mãn
xét p>3:
=>p2 chia 3 dư 1
=>8p2 chia 3 dư 2
=>8p2+1 chia hết cho 3 loại
vậy p=3
\(P=2\Rightarrow8P^2+1=33\left(LHS\right)\)
\(P=3\Rightarrow8P^2+1=73;3P^2+5=32\left(LHS\right)\)
P là số nguyên tố lớn hơn 3 có dạng \(3k+1;3k+2\left(k\inℕ^∗\right)\)
Đến đây làm nốt
Mấy bạn giúp mình với nha !
CMR nếu n và n2 + 2 là các số nguyên tố thì n3 + 2 cũng là số nguyên tố !
nếu n=3 thì đúng
nếu n khác 3 thì n^2 + 2 chia hết cho 3 và>3 nên ko là số nguyên tố làm v đi
Nếu \(n>3\) mà \(n\) nguyên tố nên \(n\) chia 3 dư 1 hoặc 2 \(\Rightarrow n=3k\pm1\left(k\inℕ^∗\right)\)
Khi đó : \(n^2+2=\left(3k\pm1\right)^2+2=9k^2\pm3k+3⋮3\)
Điều này trái với giả thiết.
Vì vậy \(n=3\). Thử lại ta thấy đúng : \(\hept{\begin{cases}n=3\\n^2+2=11\\n^3+2=29\end{cases}}\) ( đpcm )
Từ: \(p^2-q^2=p-3q+1\)\(\Rightarrow p^2-p=q^2-3q+1\Rightarrow p\left(p-1\right)=q\left(q-1\right)-2q+1\)(1)
Ta thấy p(p-1) và q(q-1) luôn chẵn; Nên Vế trái của (1) chẵn; Vế phải của 1 luôn lẻ với mọi p; q
Nên không có p; q nguyên nào thỏa mãn điều kiện đề bài.
neu p khong chia het cho 3 thi p2 chia 3 du 1 suy ra p2 +8 chia het cho 3 (trai gia thiet p2 +8 nguyen to)
vay p phai chia het cho 3, ma p nguyen to nen p=3 . suy ra p2 +2=11 la so nguyen to
tuong tu, o cau b ta cung cm duoc p=3