Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=1+2+2^2+2^3+...+2^{11}\)
\(A=\left(1+2+2^2+2^3+2^4+2^5\right)+2^6\left(1+2+2^2+2^3+2^4+2^5\right)\)
\(A=63+2^6.63\)
\(A=63\left(1+2^6\right)\)
Vì \(63⋮9\) nên \(63\left(1+2^6\right)⋮9\)
Vậy \(A⋮9\)
A=1+2+22+23+...+211
A=20+2+22+23+...+211
2A=2.(20+2+22+23+....+211)
2A=21+22+23+24+....+212
2A-A=(21+22+23+24+....+212)-(20+2+22+23+...+211)
A=212-20
A=4096-1
A=4095
Vì 4+0+9+5=18
Mà 18=6.3
18=2.9
=>4095 chia hết cho 3 và 9
Chúc bn học tốt
C=20+21+2.(22+23+ ... +29+210)+211+212
\(2C=2^1+2^2+2.\left(2^3+2^4+...+2^{10}+2^{11}\right)+2^{12}+2^{13}\)
\(\Rightarrow2C-C=\left(2^{13}+2^2\right)-\left(2^{11}+2^3\right)\)
Vậy C = 213 + 22 - 211 - 23
Ta có: S=1+3+3^2+3^3+...+3^99
S = (1+3^1+3^2+3^3) + (3^5+3^6+3^7+3^8) + ... + (3^96+3^97+3^98+3^99) (cứ 4 số hạng gộp lại)
S=(1+3^1+3^2+3^3) + 3^5(1+3^1+3^2+3^3) + ...+3^96(1+3^1+3^2+3^3)
Mà 1+3^1+3^2+3^3 = 40
Nên S= 40 + 3^5.40 +... + 3^96.40
=40.(1+3^5+...+3^96)
=10.4(1+3^5+..+3^96) ( chia hết cho 10)
Vậy S chia hết cho 10
S= ( 1+3+3^2))+...+(3^98+3^99)
=3*(1+3^2)+..+3^98*(1+3^2)
=3*4+...+3^98*4
=3*4+...+3^99*3*4
=12+...+3^99*12
=S=(1+...+3^99)*10 chia het cho10
=> S chia het cho 10
Minh nghi la vayt vi minh cung ko chac la dung neu sai thi mong ban thong cam !
Đặt \(\left(1+2+2^2+2^3+...+2^{11}\right)⋮9\) thì:
\(\left(2^{11}-...-2^3-2^2-2-1\right)⋮9\) điều đó cũng tương đương với:
\(\Leftrightarrow\left(1024-...-8-4-2-1\right)⋮9\) Nhìn vào phép tính trên ta nhận thấy phép tính đó chia hết cho 9
\(\Rightarrow\left(1+2+2^2+2^3+...+2^{11}\right)⋮9\RightarrowĐPCM\)
=(1+2+\(2^2\)+\(2^3\))+...+(,.............
rồi làm tiếp