K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2017

a)\(2^{29}+2^{30}=2^{29}\left(1+2\right)=2^{29}.3⋮3\)

Vậy \(2^{29}+2^{30}⋮3\)

17 tháng 10 2017

B nữa bạn c luôn

26 tháng 9 2016

3^21*(1+3+3^2)+3^24*(1+3+3^2)+3^27*(1+3+3^2)=13*321+13*324+13*327=13*(3^21+3^24+3^27) chia hết cho 13

A=(1+5+5^2)+...+5^402(1+5+5^2)=31*(1+5^3+...+5^402) chia hết cho 31

3A-A=3^2009-3   => 2A+3=32009  => n=2009

2*(1+2)+23*(1+2)+...+299(1+2)=3*(2+2^3+...+2^99) chia hết cho 3

19 tháng 10 2017

Ta có \(\left(29^m+1\right)\left(29^m+2\right)\left(29^m+3\right)\left(29^m+4\right)\)

 \(\Rightarrow29^m\left(1+2+3+4\right)=29^m\cdot10⋮5\)

19 tháng 10 2017

= 29 m +1 x 29m+2 x 29m+3 x 29m+4

= 29m x (1+2+3+4)

=29mx10 chia hết cho 5

=> 29m + 1 x 29m + 2 x 29m + 3 x 29m + 4 chia hết cho 5

27 tháng 10 2017

a)A=2+2^2+2^3.....+2^60

(2+2^2)+(2^3+2^4)+.....+(2^59+2^60)

2×(1+2)+2^3×(1+2)+....+2^59×(1+2)

2×3+2^3×3+...+2^59×3

vì 3 chia hết cho 3 nên:

2×3+2^3×3+...+2^59×3 chia hết cho 3

2+2^2+2^3+....+2^60

(2+2^2+2^3)+....+(2^58+2^59+2^60)

2×(1+2+2^2)+....+2^58×(1+2+2^2)

2×(1+2+4)+....+2^58×(1+2+4)

2×7+.....+2^58×7

vì 7 chia hết cho 7 nên:

2×7+....+2^58×7 chia hết cho 7

b)B=3+3^2+3^3+.....+3^1991

(3+3^2+3^3)+...+(3^1989+3^1990+3^1991)

3×(1+3+3^2)+....+3^1989×(1+3+3^2)

3×(1+3+9)+....+3^1989×(1+3+9)

3×13+....+3^1989×13

vì 13 chia hết cho 13 nên

3×13+....+3^1989×13 chia hết cho 13