Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A^3=2+\sqrt{5}+2-\sqrt{5}+3\cdot A\cdot\sqrt[3]{4-5}\)
\(\Leftrightarrow A^3=4-3A\)
=>A=1
c: \(C=1+\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
\(=1+3=4\)
a) \(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
=\(\sqrt[3]{16+8\sqrt{5}}+\sqrt[3]{16-8\sqrt{5}}\)
=\(\sqrt[3]{\left(1+\sqrt{5}\right)^3}+\sqrt[3]{\left(1-\sqrt{5}\right)^3}\)
=\(1+\sqrt{5}+1-\sqrt{5}=2\)
b) \(\left(2-\sqrt{3}\right)\sqrt[3]{26+15\sqrt{3}}\)
=\(\left(2-\sqrt{3}\right)\sqrt[3]{\left(2+\sqrt{3}\right)^3}\)
=\(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3=1\)
c) xem lại đề
Bạn Thái làm sai rồi
a)do ban đầu cậu nhân 2 cho hai vế nhưng bạn chưa chia lại.mik bổ sung ý tiếp cho bạn là
2A=2=>A=1.
mik lam tiep cau b la
B=\(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)\)
=4-3
=1.
còn câu c mik pó tay :))
Đề bài sai, casio cho kết quả ko phải một số nguyên, đề bài đúng phải là \(\frac{125}{27}\)
\(x=\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\)
\(\Rightarrow x^3=6-3\sqrt[3]{\frac{125}{27}}\left(\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\right)\)
\(\Rightarrow x^3=6-5x\)
\(\Leftrightarrow x^3+5x-6=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+6\right)=0\Rightarrow x=1\)
Vậy \(x\in Z\)
\(A=\sqrt[3]{3+\sqrt{9+\dfrac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\dfrac{125}{27}}}\)
\(\Leftrightarrow A=\sqrt[3]{3+\sqrt{9+\dfrac{125}{27}}}+\sqrt[3]{3-\sqrt{9+\dfrac{125}{27}}}\)
\(\Leftrightarrow A^3=6+3A.\sqrt[3]{3+\sqrt{9+\dfrac{125}{27}}}.\sqrt[3]{3-\sqrt{9+\dfrac{125}{27}}}\)
\(\Leftrightarrow A^3=6+3A.\left(-\dfrac{5}{3}\right)\)
\(\Leftrightarrow A^3+5A-6=0\)
\(\Leftrightarrow\left(A-1\right)\left(A^2+A+6\right)=0\)
\(\Leftrightarrow A=1\)
đâu cần lập đặt 2 ẩn a;b là 2 cái căn 3 đó xong đưa về hệ phương trình là được mà đăng lên hỏi chơi thôi
Đề sai sửa lại là:
\(x=\sqrt[3]{3+\sqrt{9+\dfrac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\dfrac{125}{27}}}\)
\(\Leftrightarrow x=\sqrt[3]{3+\sqrt{9+\dfrac{125}{27}}}+\sqrt[3]{3-\sqrt{9+\dfrac{125}{27}}}\)
\(\Leftrightarrow x^3=3+\sqrt{9+\dfrac{125}{27}}+3-\sqrt{9+\dfrac{125}{27}}+3.\left(\sqrt[3]{3+\sqrt{9+\dfrac{125}{27}}}+\sqrt[3]{3-\sqrt{9+\dfrac{125}{27}}}\right)\left(\sqrt[3]{3+\sqrt{9+\dfrac{125}{27}}}.\sqrt[3]{3-\sqrt{9+\dfrac{125}{27}}}\right)\)
\(\Leftrightarrow x^3=6+3x.\left(\dfrac{-5}{3}\right)\)
\(\Leftrightarrow x^3+5x-6=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow x=1\)
Vậy x là số nguyên
đề sai à??