K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(-x^2+x-\dfrac{1}{2}\)

\(=-\left(x^2-x+\dfrac{1}{2}\right)\)

\(=-\left(x^2-x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}< 0\)

8 tháng 8 2017

\(0< x< \dfrac{1}{2}\) áp dụng BĐT Cauchy-Schwarz dạng Engel

\(\dfrac{1}{x}+\dfrac{2}{1-2x}=\dfrac{2}{2x}+\dfrac{2}{1-2x}=2\left(\dfrac{1}{2x}+\dfrac{1}{1-2x}\right)\)

\(\ge2.\dfrac{\left(1+1\right)^2}{2x+1-2x}=\dfrac{2.4}{1}=8\)

Đẳng thức xảy ra \(\Leftrightarrow\dfrac{1}{2x}=\dfrac{1}{1-2x}\Leftrightarrow x=\dfrac{1}{4}\)

AH
Akai Haruma
Giáo viên
8 tháng 8 2017

Bài 3:

a) Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\) \(\geq 2.\frac{(1+1)^2}{2xy+x^2+y^2}=\frac{8}{(x+y)^2}=8\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

b) Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{1}{x^2+y^2}=\frac{1}{2xy}+\left (\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\geq \frac{1}{2xy}+\frac{(1+1)^2}{2xy+x^2+y^2}\)

\(=\frac{1}{2xy}+\frac{4}{(x+y)^2}\)

Theo BĐT AM-GM:

\(xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}\Rightarrow \frac{1}{2xy}\geq 2\)

Do đó \(\frac{1}{xy}+\frac{1}{x^2+y^2}\geq 2+4=6\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
8 tháng 8 2017

Bài 1: Thiếu đề.

Bài 2: Sai đề, thử với \(x=\frac{1}{6}\)

Bài 4 a) Sai đề với \(x<0\)

b) Áp dụng BĐT AM-GM:

\(x^4-x+\frac{1}{2}=\left (x^4+\frac{1}{4}\right)-x+\frac{1}{4}\geq x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x^4=\frac{1}{4}\\ x=\frac{1}{2}\end{matrix}\right.\) (vô lý)

Do đó dấu bằng không xảy ra , nên \(x^4-x+\frac{1}{2}>0\)

Bài 6: Áp dụng BĐT AM-GM cho $6$ số:

\(a^2+b^2+c^2+d^2+ab+cd\geq 6\sqrt[6]{a^3b^3c^3d^3}=6\)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=d=1\)

10 tháng 8 2017

5) a) Đặt b+c-a=x;a+c-b=y;a+b-c=z thì 2a=y+z;2b=x+z;2c=x+y

Ta có:

\(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}=\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}=\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge6\)

Vậy ta suy ra đpcm

b) Ta có: a+b>c;b+c>a;a+c>b

Xét: \(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)

.Tương tự:

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c};\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)

Vậy ta có đpcm

10 tháng 8 2017

6) Ta có:

\(a^2+b^2+c^2+d^2+ab+cd\ge2ab+2cd+ab+cd=3\left(ab+cd\right)\)

\(ab+cd=ab+\dfrac{1}{ab}\ge2\)

Suy ra đpcm

a: \(A=\dfrac{4x\left(2-x\right)+8x^2}{\left(2+x\right)\left(2-x\right)}:\dfrac{x-1-2x+4}{x\left(x-2\right)}\)

\(=\dfrac{8x-4x^2+8x^2}{\left(x+2\right)\cdot\left(-1\right)\cdot\left(x-2\right)}\cdot\dfrac{x\left(x-2\right)}{-x+3}\)

\(=\dfrac{8x+4x^2}{\left(x+2\right)\cdot\left(-1\right)}\cdot\dfrac{x}{-x+3}\)

\(=\dfrac{4x\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}\cdot x=\dfrac{4x^2}{x+3}\)

b: \(=\left(n^2+3n+1+1\right)\left(n^2+3n+1-1\right)\)

\(=\left(n^2+3n+2\right)\left(n^2+3n\right)\)

\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮4!=24\)

21 tháng 1 2018

Ai lm giúp mk vs câu nào cũng được. Ai làm xong sớm nhất sẽ được tick

AH
Akai Haruma
Giáo viên
29 tháng 11 2018

Mình nghĩ đề bài là:

CMR : \(C=\frac{8-12x+6x^2-x^3}{x^3-2x^2+x-2}< 0\)

-----------------------

ĐK: \(x^3-2x^2+x-2\neq 0\)

\(\Leftrightarrow x^2(x-2)+(x-2)\neq 0\)

\(\Leftrightarrow (x-2)(x^2+1)\neq 0\Rightarrow x\neq 2\)

Ta có: \(C=\frac{8-12x+6x^2-x^3}{x^3-2x^2+x-2}=-\frac{x^3-6x^2+12x-8}{(x^2+1)(x-2)}\)

\(=-\frac{(x-2)^3}{(x^2+1)(x-2)}=-\frac{(x-2)^2}{x^2+1}\)

Với mọi \(x\neq 2\Rightarrow (x-2)^2>0\), mà \(x^2+1>0, \forall x\in\mathbb{R}\)

\(\Rightarrow \frac{(x-2)^2}{x^2+1}>0\Rightarrow C=-\frac{(x-2)^2}{x^2+1}< 0\) (đpcm)

16 tháng 12 2018

đúng rồi đề vậy cảm ơn nha

29 tháng 5 2020

5) 3x - 1 < 8

⇔ 3x < 9

⇔ x < 3

29 tháng 5 2020

4) -8x > 24

<=> x > 32

a: (x-3)(x-2)<0

=>x-2>0 và x-3<0

=>2<x<3

b: \(\left(x+3\right)\left(x+4\right)\left(x^2+2\right)\ge0\)

\(\Leftrightarrow\left(x+3\right)\left(x+4\right)\ge0\)

=>x>=-3 hoặc x<=-4

c: \(\dfrac{x-1}{x-2}\ge0\)

nên \(\left[{}\begin{matrix}x-2>0\\x-1\le0\end{matrix}\right.\Leftrightarrow x\in(-\infty;1]\cup\left(2;+\infty\right)\)

d: \(\dfrac{x+3}{2-x}\ge0\)

\(\Leftrightarrow\dfrac{x+3}{x-2}\le0\)

hay \(x\in[-3;2)\)

10 tháng 4 2017

5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)

áp dụng bđ cosy

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

=> đpcm

6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

hay với mọi x thuộc R đều là nghiệm của bpt

7.áp dụng bđt cosy

\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)

10 tháng 4 2017

1. (a-b)2>=0

=> a2+b2-2ab>=0

2. (a-b)2>=0

=> a2+b2>=2ab

=> \(\dfrac{a^2 +b^2}{2}\ge ab\)

3.Ta phích ra thôi,ta được : a2+2a < a2+2a+1

=> cauis trên đúng