K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 8 2017

Lời giải:

Ta có:

\(x^{8n}+x^{4n}+1=(x^{4n})^2+2.x^{4n}+1-x^{4n}\)

\(=(x^{4n}+1)^2-x^{4n}=(x^{4n}+1+x^{2n})(x^{4n}+1-x^{2n})\)

Xét \(x^{4n}+1+x^{2n}=(x^{2n})^2+2.x^{2n}+1-x^{2n}=(x^{2n}+1)^2-x^{2n}\)

\(=(x^{2n}+1+x^n)(x^{2n}+1-x^n)\)

Do đó:

\(x^{8n}+x^{4n}+1=(x^{4n}+1-x^{2n})(x^{2n}+1+x^n)(x^{2n}+1-x^n)\)

\(\Rightarrow x^{8n}+x^{4n}+1\vdots x^{2n}+x^n+1\) (đpcm)

b)

Sửa đề: \(x^{3m+1}+x^{3n+2}+1\vdots x^2+x+1\)

Đặt \(A=x^{3m+1}+x^{3n+2}+1\)

\(\Leftrightarrow A=x(x^{3m}-1)+x+x^2(x^{3n}-1)+x^2+1\)

\(\Leftrightarrow A=x[ (x^3)^m-1]+x^2[(x^3)^n-1]+(x^2+x+1)\)

Khai triển:

\((x^3)^m-1=(x^3)^m-1^m=(x^3-1).T=(x-1)(x^2+x+1)T\)

(đặt là T vì phần biểu thức đó không quan trọng)

\(\Rightarrow (x^3)^m-1\vdots x^2+x+1\)

Tương tự, \((x^3)^n-1\vdots x^2+x+1\)

Do đó, \(A=x(x^{3m}-1)+x^2(x^{3n}-1)+x^2+x+1\vdots x^2+x+1\)

Ta có đpcm.

15 tháng 11 2018

\(\text{a.Ta có :}\)

\(x^{8n}+x^{4n}+1=x^{8n}+2x^{4n}+1-x^{4n}\)

\(=\left(x^{4n}+1\right)^2-\left(x^{2n}\right)^2\)

\(=\left(x^{4n}-x^{2n}+1\right)\left(x^{4n}+x^{2n}+1\right)\)

\(\text{Ta lại có :}\)

\(x^{4n}+x^{2n}+1=x^{4n}+2x^{2n}+1-x^{2n}\)

\(=\left(x^{2n}+1\right)^2-\left(x^n\right)^2=\left(x^{2n}-x^n+1\right)\left(x^{2n}+x^n+1\right)\)

\(\Rightarrow x^{8n}+x^{4n}+1=\left(x^{4n}-x^{2n}+1\right)\left(x^{2n}-x^n+1\right)\left(x^{2n}+x^n+1\right)\)

\(\Rightarrow x^{8n}+x^{4n}+1⋮x^{2n}+x^n+1\)

20 tháng 2 2020

\(a.\left(3x+2\right)^2-\left(3x-2\right)^2=5x+38\\\Leftrightarrow 9x^2+12x+4-9x^2+12x-4=5x+38\\ \Leftrightarrow24x-5x=38\\ \Leftrightarrow19x=38\\\Leftrightarrow x=2\)

Vậy nghiệm của phương trình trên là \(2\)

\(b.3\left(x-2\right)^2+9\left(x-1\right)=3\left(x^2+x-3\right)\\\Leftrightarrow 3\left(x^2-4x+4\right)+9x-9=3x^2+3x-9\\ \Leftrightarrow3x^2-3x^2-12x+9x-3x=-12+9-9\\ \Leftrightarrow-6x=-12\\\Leftrightarrow x=2\)

Vậy nghiệm của phương trình trên là \(2\)

\(c.\left(x-1\right)^3-x\left(x+1\right)^2=5x\left(2-x\right)-11\left(x-2\right)\\ \Leftrightarrow x^3-3x^2+3x-1-x\left(x^2+2x+1\right)=10x-5x^2-11x+22\\ \Leftrightarrow x^3-3x^2+3x-1-x^3-2x^2-x=10x-5x^2-11x+22\\\Leftrightarrow x^3-x^3-3x^2-2x^2+5x^2+3x-x-10x+11x=1+22\\ \Leftrightarrow3x=23\\\Leftrightarrow x=\frac{23}{3}\)

Vậy nghiệm của phương trình trên là \(\frac{23}{3}\)

\(d.\left(x+3\right)^2-\left(x-3\right)^2=6x+18\\ \Leftrightarrow x^2+6x+9-x^2+6x-9=6x+18\\ \Leftrightarrow12x-6x=18\\ \Leftrightarrow6x=18\\ \Leftrightarrow x=3\)

Vậy nghiệm của phương trình trên là \(3\)

20 tháng 2 2020

\(e.\left(x+1\right)\left(x^2-x+1\right)-2x=x\left(x-1\right)\left(x+1\right)\\\Leftrightarrow x^3+1-2x=x\left(x^2-1\right)\\\Leftrightarrow x^3+1-2x=x^3-x\\ \Leftrightarrow x^3-x^3-2x+x=-1\\ \Leftrightarrow-x=-1\\ \Leftrightarrow x=1\)

Vậy nghiệm của phương trình trên là \(1\)

\(f.\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\\\Leftrightarrow x^3-6x^2+12x-8+9x^2-1=x^3+3x^2+3x+1\\ \Leftrightarrow x^3-x^3-6x^2+9x^2-3x^2+12x-3x=8+1+1\\ \Leftrightarrow9x=10\\ \Leftrightarrow x=\frac{10}{9}\)

Vậy nghiệm của phương trình trên là \(\frac{10}{9}\)

17 tháng 8 2020

a)Ta có:

\(\left(x-2\right)^2-\left(x-3\right)\left(x-1\right)\\ =x^2-4x+4-x^2+4x-3\\ =1\)

Vậy biểu thức \(\left(x-2\right)^2-\left(x-3\right)\left(x-1\right)\)không phụ thuộc vào biến

b) Ta có:

\(\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\\ =x^3-3x^2+3x-1-x^3-3x^2-3x-1+6x^2-6\\ =-8\)

Vậy.....

c) Ta có:

\(\left(x-3\right)\left(x+3\right)\left(x^2+9\right)-\left(x^2-2\right)\left(x^2+2\right)\\ =\left(x^2-9\right)\left(x^2+9\right)-x^4+4\\ =x^4-81-x^4+4=-77\)

Vậy....

d) Ta có: \(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x-5\right)+\left(3x-5\right)^2\\ =\left(3x+1-3x+5\right)^2\\ =6^2=36\)

Vậy....

a, Ta có :\(x^{8n}+x^{4n}+1=x^{8n}+2x^{4n}+1-x^{4n}\)

\(=\left(x^{4n}+1\right)^2-\left(x^{2n}\right)^2\)

\(=\left(x^{4n}+x^{2n}+1\right)\left(x^{4n}-x^{2n}+1\right)\)

\(=\left(x^{4n}+2x^{2n}+1-x^{2n}\right)\left(x^{4n}-x^{2n}+1\right)\)

\(=\left[\left(x^{2n}+1\right)-\left(x^n\right)^2\right]\left(x^{4n}-x^{2n}+1\right)\)

\(=\left(x^{2n}+1-x^n\right)\left(x^{2n}+1+x^n\right)\left(x^{4n}-x^{2n}+1\right)\)

\(\Leftrightarrow x^{8n}+x^{4n}+1⋮x^{2n}+x^n+1\left(\forall x\right)\)

2 tháng 9 2018

a) x^2+8x+4^2 = (x+4)^2 ( câu này mk sữa đề nhát)

b) x^2-2x1+1^2 = (x-1)^2

c) (x-1)(x+1) = x^2 - 1

d) 100-20x+x^2 = (x-10)^2

e) (x-y)(x+y) = x^2 - y^2

f) x^2+x+1/4 = (x+1/2)^2

2 tháng 9 2018

câu a đề sai rồi bạn nhé!

\(b,x^2-2.x.1+1^2\)

\(=\left(x-1\right)^2\) (áp dụng hằng đẳng thức bình phương của 1 hiệu)

Vậy ....

\(c,\left(x-1\right)\left(x+1\right)\)

\(=x^2-1\) (áp dụng hằng đẳng thức hiệu 2 bình phương)

Vậy ....

\(d,100-20x+x^2\)

\(=x^2-20x+100\)

\(=x^2-2.x.10+10^2\)

\(=\left(x-10\right)^2\) (áp dụng hằng đẳng thức bình phương của 1 hiệu)

Vậy ...

\(e,\left(x-y\right)\left(x+y\right)\)

\(=x^2-y^2\) (áp dụng hằng đẳng thức hiệu 2 bình phương)

\(f,x^2+x+\dfrac{1}{4}\)

\(=x^2+x+\left(\dfrac{1}{2}\right)^2\)

\(=\left(x+\dfrac{1}{2}\right)^2\) (áp dụng hằng đẳng thức bình phương của 1 tổng)

Vậy ...

Chúc bạn hok tốt!!!

15 tháng 10 2020

1.

a, \(\left(x+3\right)\left(x-3\right)-\left(x-3\right)^2\)

\(=\left(x-3\right)\left(x+3-x+3\right)\)

\(=9\left(x-3\right)=9x-27\)

b, \(\left(2x+1\right)^2+2\left(2x+1\right)\left(x-1\right)+\left(x-1\right)^2\)

\(=\left(2x+1+x-1\right)^2=9x^2\)

c, \(x\left(x-3\right)\left(x+3\right)-\left(x^2+1\right)\left(x^2-1\right)\)

\(=x\left(x^2-9\right)-\left(x^4-1\right)\)

\(=x^3-9x-x^4+1=-x^4+x^3-9x+1\)

8 tháng 3 2020
https://i.imgur.com/Tqad5uk.jpg