Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4) Ta có : A=(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)
=> (a+d)2 - (b+c)2= (a-d)2 - (c-b)2
=> a2+ d2+ 2ad - b2- c2- 2bc=a2 + d2 - 2ad - c2-b2+2bc
Rút gọn ta được: 4ad = 4bc => ad = bc =>\(\dfrac{a}{c}=\dfrac{b}{d}\)
1) a2+b2+c2+3=2(a+b+c) =>(a-1)2+(b-1)2+(c-1)2=0
=> a-1=b-1=c-1=0 => a=b=c=1 =>đpcm
a.
\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
\(\Leftrightarrow2a^4+2b^4\ge a^4+ab^3+a^3b+b^4\)
\(\Leftrightarrow a^4+b^4\ge ab^3+a^3b\)
\(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(*)
Mà \(a^2+ab+b^2=\left(a^2+2\cdot a\cdot\dfrac{1}{2}b+\dfrac{b^2}{4}\right)+\dfrac{3b^2}{4}=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\)
Suy ra (*) đúng => đpcm
Dấu "=" xảy ra khi a = b
b.
\(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
\(\Leftrightarrow3a^4+3b^4+3c^4\ge a^4+ab^3+ac^3+a^3b+b^4+bc^3+a^3c+b^3c+c^4\)
\(\Leftrightarrow2a^4+2b^4+2c^4\ge ab^3+a^3b+b^3c+bc^3+ca^3+c^3a\)
\(\Leftrightarrow\left(a^4+b^4\right)+\left(b^4+c^4\right)+\left(c^4+a^4\right)\ge\left(a^3b+ab^3\right)+\left(b^3c+bc^3\right)+\left(c^3a+ca^3\right)\)
Theo câu a. thì điều này đúng
Dấu "=" khi a=b=c
a)\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Leftrightarrow3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)
b,c tương tự
d)Áp dụng bđt AM-GM ta được
\(a^4+a^4+b^4+c^4\ge4\sqrt[4]{a^4a^4b^4c^4}=4a^2bc\)
TT\(\Rightarrow a^4+b^4+b^4+c^4\ge4ab^2c\)
\(a^4+b^4+c^4+c^4\ge4abc^2\)
Cộng vế theo vế ta được \(4\left(a^4+b^4+c^4\right)\ge4\left(a^2bc+ab^2c+abc^2\right)\)
\(\Leftrightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\left(đpcm\right)\)
d)
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
\(\Leftrightarrow a^4+b^4+c^4-a^2bc-ab^2c-abc^2\ge0\)
\(\Leftrightarrow2a^4+2b^4+2c^4-2a^2bc-2ab^2c-2abc^2\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2+2a^2b^2+\left(b^2-c^2\right)^2+2b^2c^2+\left(c^2-a^2\right)^2+2a^2c^2-2a^2bc-2b^2ac-2c^2ab\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2+\left(a^2b^2+b^2c^2-2b^2ac\right)+\left(b^2c^2+c^2a^2-2c^2abc\right)+\left(a^2b^2+c^2a^2-2a^2ab\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2+\left(ab-bc\right)^2+\left(bc-ac\right)^2+\left(ab-ac\right)^2\ge0\)
Luôn đúng với mọi a , b , c
Bài 1:
(a)
Vì $a,b,c$ là độ dài ba cạnh tam giác nên theo BĐT tam giác ta có:
\(\left\{\begin{matrix} a+b>c\\ b+c>a\\ c+a>b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} c(a+b)>c^2\\ a(b+c)>a^2\\ b(c+a)>b^2\end{matrix}\right.\)
\(\Rightarrow c(a+b)+a(b+c)+b(c+a)> c^2+a^2+b^2\)
\(\Leftrightarrow 2(ab+bc+ac)> a^2+b^2+c^2\)
Ta có đpcm.
(2): Bài này có nhiều cách giải. Nhưng mình xin đưa ra cách làm thuần túy Cô-si nhất.
Đặt
\((a+b-c, b+c-a, c+a-b)=(x,y,z)\Rightarrow (a,b,c)=(\frac{x+z}{2}; \frac{x+y}{2}; \frac{y+z}{2})\)
Khi đó:
\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}=\frac{x+z}{2y}+\frac{x+y}{2z}+\frac{y+z}{2x}\)
\(=\frac{x}{2y}+\frac{z}{2y}+\frac{x}{2z}+\frac{y}{2z}+\frac{y}{2x}+\frac{z}{2x}\geq 6\sqrt[6]{\frac{1}{2^6}}=3\) (áp dụng BĐT Cô-si)
Ta có đpcm
Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c$
(c):
Theo BĐT tam giác:
\(b+c>a\Rightarrow 2(b+c)> b+c+a\Rightarrow b+c> \frac{a+b+c}{2}\)
\(\Rightarrow \frac{a}{b+c}< \frac{2a}{a+b+c}\)
Hoàn toàn tương tự với những phân thức còn lại và cộng theo vế:
\(\Rightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)
Ta có đpcm.
Bài 2:
Áp dụng BĐT Cô-si cho các số dương:
\(a^2+b^2+c^2+d^2+ab+cd\geq 6\sqrt[6]{a^2.b^2.c^2.d^2.ab.cd}=6\sqrt[6]{(abcd)^3}=6\sqrt[6]{1^3}=6\)
Ta có đpcm
Dấu "=" xảy ra khi \(\left\{\begin{matrix} a^2=b^2=c^2=d^2=ab=cd\\ abcd=1\end{matrix}\right.\Rightarrow a=b=c=d=1\)
B1:
\(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
Xét hiệu:
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\)
\(=\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\)
\(=\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)
=> BĐT luôn đúng
*
Ta có:
\(a< b+c\Rightarrow a^2< ab+ac\)
\(b< a+c\Rightarrow b^2< ab+ac\)
\(c< a+b\Rightarrow a^2< ac+bc\)
Cộng từng vế bất đẳng thức ta được:
\(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
Vậy: \(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
B2:
Ta có: \(a+b>c\) ; \(b+c>a\); \(a+c>b\)
Xét:\(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{a+b+c}+\dfrac{1}{a+c+b}=\dfrac{2}{a+b+c}>\dfrac{2}{b+c+b+c}=\dfrac{1}{b+c}\)
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+c+a+c}=\dfrac{1}{a+c}\)
Suy ra:
\(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b}\)
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c}\)
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)
=> ĐPCM
a) \(A=\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(5x+5\right)^2\)
\(A=\left[\left(3x+1\right)-\left(5x+5\right)\right]^2\)
\(A=\left(-2x-4\right)^2\)
A = (3x + 1)2 - 2(3x + 1)(5x + 5) + (5x + 5)2
= [(3x + 1)-(5x + 5)]2
= (3x + 1 - 5x - 5)2
= [(-2x) - 4]2
B = (3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)
=> (3 - 1)B = (3 - 1)(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)
=>2B = (32 - 1)(32 + 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)
= (34 - 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)
= (38 - 1)(38 + 1)(316 +1)(332 + 1)
= (316 - 1)316 +1)(332 + 1)
= (332 - 1)(332 + 1)
= 364 - 1
vì 2B = 364 - 1
=> B = \(\dfrac{3^{64}-1}{2}\)
C = a2 + b2 + c2 + 2ab - 2ac - 2bc + a2 + b2 + c2 - 2ab + 2ac - 2bc - 2( b2 - 2bc + c2)
= 2a2 + 2b2 + 2c2 - 4bc - 2b2 + 4bc - 2c2
= 2a2