Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng Bdt cosi 3 số dương ta có"
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Dấu = khi a=b=c
Đpcm
Ta có: \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b\right)+3abc\)
\(=\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)^3-3\left(a+b+c\right)\left(ac+bc+ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\) (đúng với a,b,c>0)
\(a^3+b^3+c^3\ge3abc\)
\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc\ge0\)
\(\Leftrightarrow\)\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\ge0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\ge0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\ge0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\) (*)
Do a,b,c > 0 => \(a+b+c>0\) (1)
Áp dụng BĐT Cauchy ta có:
\(a^2+b^2\ge2ab\)
\(b^2+c^2\ge2bc\)
\(c^2+a^2\ge2ca\)
suy ra: \(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\)\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\) \(a^2+b^2+c^2-ab-bc-ca\ge0\) (2)
Dấu "=" xảy ra <=> \(a=b=c\)
Từ (1) và (2) => BĐT (*) đc chứng minh
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)=0
\(\Leftrightarrow\)\(a^3+ab^2+ac^2-a^2b-a^2c-abc+a^2b+b^3+bc^2-ab^2-\)
\(abc-b^2c+ca^2+bc^2+c^3-abc-ac^2-bc^2\)=0
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3-3abc=-c^3\)
b) \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (chuyển vế qua)
\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
Do VP >=0 với mọi a, b, c. Nên để đăng thức xảy ra thì a = b = c
Theo bài ra ta có:
a^3=a*a*a
b^3=b*b*b
c^3=c*c*c
=>a^3+b^3+c^3=a*a*a+b*b*b+c*c*c=3abc
Nếu a=b=c
=>a*a*a+b*b*b+c*c*c=a*a*a+a*a*a+a*a*a=3*a*a*a
=>3a^3=3a^
Vậy a^3+b^3+c^3=3abc<=>a=b=c (ĐPCM)