K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2018

Hỏi đáp Toán

24 tháng 1 2018

Hỏi đáp Toán

22 tháng 8 2015

c) n3 - 2 = (n- 8) + 6 = (n -2)(n+ 2n + 4) + 6

Để n- 2 chia hết cho n - 2 <=>  6 chia hết cho n - 2  <=> n - 2 \(\in\) Ư(6) = {-6;-3;-2;-1;1;2;3;6}

Tương ứng n \(\in\) {-4; -1; 0; 1; 3; 4; 5; 8}

Vậy..... 

d) n3 - 3n- 3n - 1 = (n- 1) - (3n+ 3n + 3) + 3 = (n -1).(n+ n + 1) - 3.(n+ n + 1) + 3 = (n - 4)(n2  + n + 1) + 3

Để n3 - 3n- 3n - 1 chia hết cho n+ n + 1 thì (n - 4)(n + n + 1) + 3 chia hết cho n + n + 1

<=> 3 chia hết cho n+ n + 1 <=> n+ n + 1 \(\in\) Ư(3) = {-3;-1;1;3}

Mà n2 + n + 1 = (n + \(\frac{1}{2}\))\(\frac{3}{4}\) > 0 với mọi n nên n+ n + 1 = 1 hoặc = 3

n+ n + 1 = 1 <=>  n = 0 hoặc n = -1

n2 + n + 1 = 3 <=> n2 + n - 2 = 0 <=> (n -1)(n +2) = 0 <=> n = 1 hoặc n = -2

Vậy ...

e) n4 - 2n + 2n- 2n + 1 = (n4 - 2n3 + n2) + (n2 - 2n + 1) = (n- n)2 + (n -1)2 = n2(n -1)+ (n -1)= (n-1)2.(n+ 1)

n4 - 1 = (n- 1).(n2 + 1) = (n -1)(n +1)(n+ 1)

=> \(\frac{n^4-2n^3+2n^2-2n+1}{n^4-1}=\frac{\left(n-1\right)^2\left(n^2+1\right)}{\left(n-1\right)\left(n+1\right)\left(n^2+1\right)}=\frac{n-1}{n+1}\)( Điều kiện: n- 1 ; n + 1 khác 0 => n khác 1;-1)

Để n- 2n+ 2n- 2n + 1 chia hết cho n- 1 thì \(\frac{n-1}{n+1}\) nguyên <=> n - 1 chia hết cho n + 1

<=> (n + 1) - 2 chia hết cho n +1 

<=> 2 chia hết cho n + 1 <=> n + 1 \(\in\) Ư(2) = {-2;-1;1;2} <=> n \(\in\){-3; -2; 0; 1}

n = 1 Loại

Vậy n = -3 hoặc -2; 0 thì... 

22 tháng 8 2015

a) n2 + 2n - 4 = n2 + 2n - 15 + 11 = (n2  + 5n - 3n -15) + 11 = (n - 3)(n + 5) + 11 

để n2  + 2n - 4 chia hết cho 11 <=> (n - 3).(n +5) chia hết cho 11 <=> n - 3 chia hết cho 11 hoặc n + 5 chia hết cho 11 ( Vì 11 là số nguyên tố)

n- 3 chia hết cho 11 <=> n = 11k + 3 ( k nguyên)

n + 5 chia hết cho 11 <=> n = 11k' - 5 ( k' nguyên)

Vậy với n = 11k + 3 hoặc n = 11k' - 5 thì.....

b) 2n+ n+ 7n + 1 = n2. (2n - 1) + 2n2 + 7n + 1 = n2. (2n -1) + n.(2n -1) + 8n + 1 

= (n2  + n)(2n -1) + 4.(2n -1) + 5 = (n+ n + 4)(2n -1) + 5

Để 2n+ n+ 7n + 1 chia hết cho 2n - 1 <=> (n+ n + 4)(2n -1) + 5 chia hết cho 2n -1

<=> 5 chia hết cho 2n -1 <=> 2n - 1 \(\in\)Ư(5) = {-5;-1;1;5}

2n -1 = -5 => n = -2

2n -1 = -1 => n = 0

2n -1 = 1 => n = 1

2n -1 = 5 => n = 3

Vậy....

24 tháng 9 2017

các bạn ơi giúp mk với huhu

24 tháng 9 2017

Bạn học lược đồ hooc - ner chưa

21 tháng 10 2018

kết bạn nhé

21 tháng 10 2018

kết bạn nhé

29 tháng 9 2019

a) n(n + 5) - (n - 3)(n + 2) = n2 + 5n - n2 - 2n + 3n + 6 = 6n + 6 = 6(n + 1) \(⋮\)\(\forall\)\(\in\)Z

b) (n2 + 3n - 1)(n + 2) - n3  + 2 = n3 + 2n2 + 3n2 + 6n - n - 2 - n3 + 2 = 5n2 + 5n = 5n(n + 1) \(⋮\)\(\forall\)\(\in\)Z

c) (6n + 1)(n + 5) - (3n + 5)(2n - 1) = 6n2 + 30n + n + 5 - 6n2 + 3n - 10n + 5 = 24n + 10 = 2(12n + 5) \(⋮\)\(\forall\)\(\in\)Z

d) (2n - 1)(2n + 1) - (4n - 3)(n - 2) - 4 = 4n2 - 1 - 4n2 + 8n + 3n - 6 - 4 = 11n - 11 = 11(n - 1) \(⋮\)11 \(\forall\)\(\in\)Z

23 tháng 8 2019

\(x^2-x-6=x^2-3x+2x-6=x\left(x-3\right)+2\left(x-3\right)=\left(x-3\right)\left(x+2\right)\)

\(x^4+x^2+1=x^4+2x^2+1-x^2=\left(x^2+1\right)-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)\(x^3-19x-30=\left(x^3+8\right)-\left(19x-38\right)=\left(x+2\right)\left(x^2-2x+4\right)-19\left(x+2\right)=\left(x+2\right)\left(x^2-2x-15\right)=\left(x+2\right)\left(x^2-5x+3x-15\right)=\left(x+2\right)\left(x-5\right)\left(x+3\right)\)

\(x^4+4x^2-5=x^4+4x^2+4-9=\left(x^2+2\right)^2-9=\left(x^2+5\right)\left(x^2-1\right)=\left(x^2+5\right)\left(x-1\right)\left(x+1\right)\)

23 tháng 8 2019

\(x^3-7x-6=0\Leftrightarrow\left(x^3+1\right)-\left(7x+7\right)=0\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)-7\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x^2-x-6\right)=0\Leftrightarrow\left(x+1\right)\left(x^2-3x+2x-6\right)=0\Leftrightarrow\left(x+1\right)\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\\x=-1\end{matrix}\right.\)

\(x^3-3x^2-16x+48=x^2\left(x-3\right)-16\left(x-3\right)=\left(x^2-16\right)\left(x-3\right)=\left(x-4\right)\left(x+4\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-3=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\\x=-4\end{matrix}\right.\)