Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt n=2k+1 với k thuộc Z
A=(2k+1)^2+4(2k+1)+5=4k^2+12k+10= (2k+3)^2+1
ta biết 1 số bình phương chia cho 8 thì dư 1 hoặc 3(cậu nên chứng minh thêm bài toán phụ này)
khi đó A chia 8 sẽ dư 2 hoăc 4,suy ra đpcm
Bài 2:
Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)
1:
\(n^2+4n+3\)
\(=n^2+3n+n+3\)
\(=\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=4\left(k+1\right)\left(k+2\right)\)
Vì k+1;k+2 là hai số nguyên liên tiếp
nên \(\left(k+1\right)\left(k+2\right)⋮2\)
=>\(4\left(k+1\right)\left(k+2\right)⋮8\)
hay \(n^2+4n+3⋮8\)
2: \(n^3+3n^2-n-3\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)
\(=2k\left(2k+2\right)\left(2k+4\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)
=>\(k\left(k+1\right)\left(k+2\right)⋮6\)
=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)
hay \(n^3+3n^2-n-3⋮48\)
cần rất gấp
mọi người giúp mình ha:))
mình sẽ k cho ai trả lời nhanh và đúng nhất
b) \(n^3+3n^2-n-3=n\left(n^2-1\right)+3\left(n^2-1\right)=\left(n^2-1\right)\left(n+3\right)\)
Vì lẻ2=lẻ; lẻ + lẻ= chẵn; lẻ-1=chẵn; chẵn x chẵn =chẵn
=> (n2-1)(n+3) chia hết cho 48
A= (n-1)(n+5)
Với n =2k+1
=> A= (2k +1 -1)(2k+1-5) =2k(2k -4) =4k(k-2)
+ k =2m => A =4.2m(2m -2) = 16m(m-1) chia hết cho 8
=> A có thể chia hết cho 8
VD: n =9 => A =81 + 36 -5 = 112 =8.14 chia hết cho 8