Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 3x+1 + 3x+2 +...+ 3x+100
= (3x+1 + 3x+2 + 3x+3 + 3x+4) +...+ (3x+97 + 3x+98 + 3x+99 + 3x+100)
= 3x(3 + 32 + 33 + 34) +...+ 3x+96(3 + 32 + 33 + 34)
= 3x.120 + ... + 3x+96.120
= 120(3x +...+ 3x+96) chia hết cho 120
Đặt :
A = 3x + 1 + 3x + 2 + 3x + 3 + ..... + 3x + 100
A = 3x.3 + 3x.32 + 3x.33 + ....... + 3x.3100
A = 3x.(3 + 32 + 33 + ....... + 3100)
Đặt A' = 3 + 32 + 33 + ....... + 3100
Có : A' = 3 + 32 + 33 + ....... + 3100
A' = (3 + 32 + 33 + 34) + (35 + 36 + 37 + 38) + ....... + (397 + 398 + 399 + 3100)
A' = 3.(1 + 3 + 9 + 27) + 35.(1 + 3 + 9 + 27) + ....... + 397.(1 + 3 + 9 + 27)
A' = 3.40 + 35.40 + ....... + 397.40
A' = 40.(3 + 35 + ...... + 397)
=> A = 3x.A'
Mà A' chia hết cho 40 , đồng thời 3x chia hết cho 3
=> A chia hết cho 40.3 = 120
Chứng minh rằng:
a) 3 + 32 +.....+ 31998
= (3 + 32)+(33+34) +(35+36) .....+ (31997+31998 )
có 1998: 2 = 999 nhóm
= (3 + 32) + 32.(3 + 32) +34.(3 + 32) .....+ 31996(3 + 32)
= 12 + 32.12 +34.12 +....+ 31996.12
= 12( 1+32+34+.......+31996) chia hết cho 12
b) 3 + 32 +....+ 31998
= (3 + 32 +33) + (34 + 35 +36) + .. + (31996 + 31997 +31998) có 1998 : 3 = 666 nhóm
= (3 + 32 +33) + 33.(3 + 32 +33)+ ...+31995.(3 + 32 +33)
= 39 +33.39 + .....+31995.39
= 39(1+33+....+31995) chia hết cho 39
c) 3 + 32 +.....+ 3100 chia hết cho 120
nhóm mỗi nhóm 4 số hạng tương tự như hai câu trên ta được thừa số chung là 120
A=3+32+33+34+....+3100Cmr A chia hết cho 100
Đề sai rùi
vỡi~~~~~~~~~
Đặt A=3+32+33+34+.....+3100
A=(3+32)+(33+34)+.....+(399+3100) (có 50 số hạng)
A=3.(1+12)+3.(13+14)+.....+3.(199.1100)
A=3.2+3.2+....+3.2
A=6+6+6...+6 (50 số)
A=60.50=300 =>300 chia hết cho 100
Vậy A chia hết cho 100
\(M=3+3^2+3^3+3^4+...+3^{100}\)
\(\Rightarrow M=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(\Rightarrow M=\left(3+9+27+81\right)+...+3^{96}.\left(3+3^2+3^3+3^4\right)\)
\(\Rightarrow M=120+...+3^{96}.120\)
\(\Rightarrow M=\left(1+...+3^{96}\right).120⋮120\)
\(\Rightarrow M⋮120\left(đpcm\right)\)
Đã có :3+3^2+....+3^100 chia hết cho 3.
Mặt khác : 3+3^2+....+3^100
=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+....+(3^97+3^98+3^99+36100) (có 25 cặp, mỗi cặp 4 số )
=3.40+35.40+...+397.40chia hết cho 40
Vì ƯCLN(40,3)=1 nên dãy trên chia hết cho 40.3=120