Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b. Câu hỏi của Phùng Tuệ Minh - Toán lớp 7 - Học toán với OnlineMath
a; đặt tổng trên là A
Suy ra 2A-A =1-1/256
Suy ra A=1-1/256 hay A<1
b;đặt tổng đó là B. Ta có:
4B = 1-1/3+1/3^2- 1/3^3+....+1/3^98-1/3^99-100/3^100
suy ra 4B<1-1/3+....+1/3^99 = C (1)
Mà 4C=C+3C=3-1/3^99 nên :
suy ra 4C<3 hay b<3/4 (2)
từ (1)và(2), suy ra 4B <C<3/4 hay B< 3/16
b. Câu hỏi của Phùng Tuệ Minh - Toán lớp 7 - Học toán với OnlineMath
\(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
\(\frac{1}{4^2}<\frac{1}{3.4}\)
..........
\(\frac{1}{100^2}<\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
Vì \(\frac{99}{100}<1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<1\)
Tổng quát: \(\frac{1}{n^2}<\frac{1}{\left(n-1\right).n}\)
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}<1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<1\)
Đặt biểu thức ở vế trái là A ta có
\(A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\)
\(=1-\frac{1}{100}<1\Rightarrow A<1\) (dpcm)
ta có 1/2^2+1/3^2+1/4^2+...+1/100^2<A=1/1*2+1/2*3+1/3*4+...+1/99*100
=> A= (1-1/2)+(1/2-1/3)+(1/3-1/4)+...+(1/99-1/100)
=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-1/100= 99/100 <1
=> 1/2^2+1/3^2+1/4^2+...+1/100^2<1
1/2^2+1/3^2+1/4^2+..+1/100^2
1/2^2<1/1.2=1-1/2
1/3^2<1/2.3=1/2-1/3
1/4^2<1/3.4=1/3-1/4
........
1/100^2<1/99.100=1/99-1/100
1/2^2+1/3^2+1/4^2+...+1/100^2<1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
1/2^2+1/3^2+1/4^2+...+1/100^2<1-1/100=99/100<1 (đpcm)
ta có : \(\frac{1}{2^2}=\frac{1}{4};\frac{1}{3^2}<\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};\frac{1}{4^2}<\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4};...;\frac{1}{100^2}<\frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
=>\(\frac{1}{4}+\frac{1}{2}-\frac{1}{100}<\frac{3}{4}\left(đpcm\right)\)