K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

ta có : \(\frac{1}{2^2}=\frac{1}{4};\frac{1}{3^2}<\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};\frac{1}{4^2}<\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4};...;\frac{1}{100^2}<\frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)

=>\(\frac{1}{4}+\frac{1}{2}-\frac{1}{100}<\frac{3}{4}\left(đpcm\right)\)

4 tháng 4 2015

bạn đăng đề lên mạng thì sẽ có câu trả lời

2 tháng 4 2020

b. Câu hỏi của Phùng Tuệ Minh - Toán lớp 7 - Học toán với OnlineMath

2 tháng 4 2015

a; đặt tổng trên là A 

Suy ra 2A-A =1-1/256

Suy ra A=1-1/256 hay A<1

b;đặt tổng đó là B. Ta có:

4B = 1-1/3+1/3^2- 1/3^3+....+1/3^98-1/3^99-100/3^100

suy ra 4B<1-1/3+....+1/3^99 = C                                             (1)

Mà 4C=C+3C=3-1/3^99 nên :

suy ra 4C<3 hay b<3/4                                                             (2)

từ (1)và(2), suy ra 4B <C<3/4 hay B< 3/16

 

 

 

 

 

1 tháng 4 2015

có ai trả lời di

 

2 tháng 4 2020

b. Câu hỏi của Phùng Tuệ Minh - Toán lớp 7 - Học toán với OnlineMath

14 tháng 2 2016

\(\frac{1}{2^2}<\frac{1}{1.2}\)

\(\frac{1}{3^2}<\frac{1}{2.3}\)

\(\frac{1}{4^2}<\frac{1}{3.4}\)

..........

\(\frac{1}{100^2}<\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)

Vì \(\frac{99}{100}<1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<1\)

9 tháng 5 2016

Tổng quát: \(\frac{1}{n^2}<\frac{1}{\left(n-1\right).n}\)

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}<1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<1\)

9 tháng 5 2016

Đặt biểu thức ở vế trái là A ta có

\(A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=\)

\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\)

\(=1-\frac{1}{100}<1\Rightarrow A<1\) (dpcm)


 

22 tháng 2 2016

ta có 1/2^2+1/3^2+1/4^2+...+1/100^2<A=1/1*2+1/2*3+1/3*4+...+1/99*100

=> A= (1-1/2)+(1/2-1/3)+(1/3-1/4)+...+(1/99-1/100)

       =1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

       =1-1/100= 99/100 <1

=> 1/2^2+1/3^2+1/4^2+...+1/100^2<1

22 tháng 2 2016

1/2^2+1/3^2+1/4^2+..+1/100^2

1/2^2<1/1.2=1-1/2

1/3^2<1/2.3=1/2-1/3

1/4^2<1/3.4=1/3-1/4

........

1/100^2<1/99.100=1/99-1/100

1/2^2+1/3^2+1/4^2+...+1/100^2<1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

1/2^2+1/3^2+1/4^2+...+1/100^2<1-1/100=99/100<1 (đpcm)