Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+y)(x+y)(x+y)=(x+y)3=x3+3x2y+3xy2+y3 (hằng đẳng thức đáng nhớ lớp 8)
=>đpcm
\(\left(x+y\right)\left(x+y\right)\left(x+y\right)=x^3+3x^2y+3xy^2+y^3\)
Bạn nhân vào là ra thôi mà
Áp dụng 7 hằng đẳng thức đáng nhớ hoặc khai triển từ một tích ta thu được kết quả:
\(\left(x+y\right)^3=x^3+y^3+3xy\left(x+y\right)\)
\(\left(x-y\right)^3=x^3-y^3-3xy\left(x-y\right)\)
Bài 2:
\(M=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)
\(N=x^2+y^2=\left(x-y\right)^2+2xy=9+2.10=29\)
\(P=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)
\(Q=x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=\left(-3\right)^3+3.10.\left(-3\right)=-117\)
Bài 1:
a) \(A=x^2+2xy+y^2=\left(x+y\right)^2=\left(-1\right)^2=1\)
b) \(B=x^2+y^2=\left(x+y\right)^2-2xy=\left(-1\right)^2-2.\left(-12\right)=25\)
c) \(C=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=\left(-1\right)^3=-1\)
d) \(D=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=\left(-1\right)^3-3.\left(-12\right).\left(-1\right)=-37\)
c)\(x^3+3xy+y^3\)
\(=x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=\left(x^2-xy+y^2\right)+3xy\)
\(=x^2-xy+y^2+3xy\)
\(=x^2+2xy+y^2=\left(x+y\right)^2\)
\(=1^2=1\)
\(x^3+y^3-3x^2+3x-1\\=(x^3-3x^2+3x-1)+y^3\\=(x-1)^3+y^3\\=(x-1+y)[(x-1)^2-(x-1)y+y^2]\\=(x+y-1)(x^2-2x+1-xy+y+y^2)\)
1)Xài hằng đẳng thức.
2)Ta có:
(x+y)(x+y)(x+y)=(x+y)(x^2+xy+xy+y^2)
=(x+y)(x^2+2xy+y^2)
=x^3+2x^2y+xy^2+yx^2+2xy^2+y^3
=x^3+3x^2y+3xy^2+y^3