Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: \(-x^2+x-1\)
\(=-\left(x^2-x+1\right)\)
\(=-\left(x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\right)\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\forall x\)
hay \(-x^2+x-1< 0\forall x\)
c) Ta có: \(-9x^2+12x-5\)
\(=-\left(9x^2-12x+5\right)\)
\(=-\left[\left(3x\right)^2-2\cdot3x\cdot2+4+1\right]\)
\(=-\left(3x-2\right)^2-1\)
Ta có: \(\left(3x-2\right)^2\ge0\forall x\)
\(\Rightarrow-\left(3x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(3x-2\right)^2-1\le-1< 0\forall x\)
hay \(-9x^2+12x-5< 0\forall x\)(đpcm)
\(x^3-6x^2+5x+12>0\\ < =>\left(x^3-5x-x+5x\right)+12>0\\ < =>\left[\left(x^3-x\right)-\left(5x-5x\right)\right]+12>0\\ < =>x^2+12>0\\ < =>x^2>-12\\ =>x\in R\\ BPTcóvôsốnghiem\)
a) ĐKXĐ: x khác 0
\(x+\dfrac{5}{x}>0\)
\(\Leftrightarrow x^2+5>0\) ( luôn đúng)
Vậy bất pt vô số nghiệm ( loại x = 0)
d)
\(\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2}{8}-\dfrac{x+3}{8}\)
\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2-x-3}{8}\)
\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{-5}{8}\)
\(\Leftrightarrow2x+2-4x+4>-15\)
\(\Leftrightarrow-2x>-21\)
\(\Leftrightarrow x< \dfrac{21}{2}\)
Vậy....................
a)\(x+\dfrac{5}{x}>0\left(ĐKXĐ:x\ne0\right)\)
\(\Leftrightarrow\dfrac{x^2+5}{x}>0\)
Mà \(x^2+5>0\)
\(\Rightarrow x>0\)
d)\(\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2}{8}-\dfrac{x+3}{8}\)
\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{2x-2}{12}>\dfrac{-5}{8}\)
\(\Leftrightarrow\dfrac{-x+3}{12}>\dfrac{-5}{8}\)
\(\Leftrightarrow-x+3>-\dfrac{15}{2}\)
\(\Leftrightarrow-x>-\dfrac{21}{2}\)
\(\Leftrightarrow x< \dfrac{21}{2}\)
mình chỉ làm được 1 câu thôi:
\(x^2+x+1>0\) với mọi x
ta có: \(x^2\ge0\)
vì x2 luôn luôn không âm nên suy ra: \(x^2+x\ge0\)(với mọi x)
mà \(1>0nên\Rightarrow x^2+x+1>0\)
với mọi x