K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 2 2020

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}=9\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

29 tháng 6 2017

Ta có: \(\left(x-y-z\right)^2\)

= \(\left[\left(x-y\right)-z\right]^2\)

= \(\left(x-y\right)^2-2\left(x-y\right)z+z^2\)

= \(x^2-2xy+y^2-2xz+2yz+z^2\)

= \(x^2+y^2+z^2-2xy+2yz-2xz\left(đpcm\right)\)

11 tháng 5 2019

áp dụng bđt bunhia dạng phân thức ta có

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\)\(\frac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}\) =\(\frac{3^2}{\left(x+y+z\right)^2}\)=\(\frac{9}{1^2}\) =9

(đpcm) vậy dấu =xảy ra khi x=y=z=\(\frac{1}{3}\)

3 tháng 9 2018

Ta có:

\(\left(x+y+z\right)^2\)

\(=\left[\left(x+y\right)+z\right]^2\)

\(=\left(x+y\right)^2+2\left(x+y\right)z+z^2\)

\(=x^2+2xy+y^2+2xz+2yz+z^2\)

\(=x^2+y^2+z^2+2xy+2xz+2yz\)

3 tháng 9 2018

có đúng ko bạn cho mk còn chép

23 tháng 11 2018

Không spam nha. Chương trình game xin tặng chương trình học online. Nhằm mục đích game được nhiều người chơi.

Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.

Link như sau vào google hoặc cốc cốc để tìm kiếm:

https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao

Copy cũng được nha

Bạn vào nick này hack nick mình thu ib dưới vs nha giúp mk chuyện này//.

23 tháng 11 2018

a)ta có:(y-x-z)2≥0
=>x2+y2+z2-2xy+2xz-2yz ≥0
=>x2+y2+z2≥2xy-2xz+2yz

b)ta có:(x-1)2+(y-1)2+(z-1)2 ≥0
=>x2-2x+1+y2-2y+1+z2-2z+1≥0
=>x2+y2+z2≥2(x+y+z)

c)ta có:(a-b)2≥0
=>a2-2ab+b2≥0
=>a2+b2≥2ab
=>2a2+2b2≥a2+b2+2ab
=>2(a2+b2)/4≥(a+b)2/4
=>a2+b2≥[(a+b)/2]2

14 tháng 3 2019

Áp dụng bđt AM-GM:

\(x^2y^2+y^2z^2\ge2\sqrt{x^2y^4z^2}=2xy^2z\)

\(y^2z^2+z^2x^2\ge2\sqrt{x^2y^2z^{^4}}=2xyz^2\)

\(x^2y^2+z^2x^2\ge2\sqrt{x^4y^2z^2}=2x^2yz\)

Cộng theo vế và rút gọn: \(x^2y^2+y^2z^2+z^2x^2\ge x^2yz+xy^2z+xyz^2\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2-x^2yz-xy^2z-xyz^2\ge0\left(đpcm\right)\)

14 tháng 3 2019

\(\left(xy-yz\right)^2=x^2y^2-2xy^2z+y^2z^2\ge0\)

\(\Rightarrow x^2y^2+y^2z^2\ge2xy^2z\)

Thiết lập hai BĐT còn tại tương tự và cộng theo vế và chia cho 2:

\(x^2y^2+y^2z^2+z^2x^2\ge x^2yz+y^2xz+z^2xy\)

Chuyển vế ta có đpcm.

Dấu "=" xảy ra khi \(xy=yz=zx\Leftrightarrow x=y=z\)

1 tháng 5 2018

Cauchy - Schwarz dạng Engel :

\(\frac{1}{x^2+2xy}+\frac{1}{y^2+2yz}+\frac{1}{z^2+2zx}\ge\frac{\left(1+1+1\right)^2}{\left(x+y+z\right)^2}=9\)

Đẳng thức xảy ra <=> x = y = z = 1/3 

1 tháng 5 2018

cảm ơn nha

20 tháng 2 2017

Cách khác:

Áp dụng BĐT AM-GM ta có:

\(2yz\le y^2+z^2\Rightarrow x^2+2yz\le x^2+y^2+z^2\)

\(\Rightarrow\frac{x^2}{x^2+2yz}\ge\frac{x^2}{x^2+y^2+z^2}\). Tương tự ta cũng có: \(\left\{\begin{matrix}\frac{y^2}{y^2+2xz}\ge\frac{y^2}{x^2+y^2+z^2}\\\frac{z^2}{z^2+2xy}\ge\frac{z^2}{x^2+y^2+z^2}\end{matrix}\right.\)

Cộng theo vế rồi thu gọn ta cũng được \(P_{Min}=1\)

20 tháng 2 2017

Áp dụng bđt Cauchy-Schwarz dạng Engel ta có:

P = \(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\)\(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+xz\right)}=1\)

Dau "=" xay ra khi x = y = z