K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

Ta có: \(\left(x-y-z\right)^2\)

= \(\left[\left(x-y\right)-z\right]^2\)

= \(\left(x-y\right)^2-2\left(x-y\right)z+z^2\)

= \(x^2-2xy+y^2-2xz+2yz+z^2\)

= \(x^2+y^2+z^2-2xy+2yz-2xz\left(đpcm\right)\)

NV
6 tháng 2 2020

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}=9\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

3 tháng 9 2018

Ta có:

\(\left(x+y+z\right)^2\)

\(=\left[\left(x+y\right)+z\right]^2\)

\(=\left(x+y\right)^2+2\left(x+y\right)z+z^2\)

\(=x^2+2xy+y^2+2xz+2yz+z^2\)

\(=x^2+y^2+z^2+2xy+2xz+2yz\)

3 tháng 9 2018

có đúng ko bạn cho mk còn chép

1 tháng 5 2018

Cauchy - Schwarz dạng Engel :

\(\frac{1}{x^2+2xy}+\frac{1}{y^2+2yz}+\frac{1}{z^2+2zx}\ge\frac{\left(1+1+1\right)^2}{\left(x+y+z\right)^2}=9\)

Đẳng thức xảy ra <=> x = y = z = 1/3 

1 tháng 5 2018

cảm ơn nha

11 tháng 5 2019

áp dụng bđt bunhia dạng phân thức ta có

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\)\(\frac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}\) =\(\frac{3^2}{\left(x+y+z\right)^2}\)=\(\frac{9}{1^2}\) =9

(đpcm) vậy dấu =xảy ra khi x=y=z=\(\frac{1}{3}\)

14 tháng 3 2019

Áp dụng bđt AM-GM:

\(x^2y^2+y^2z^2\ge2\sqrt{x^2y^4z^2}=2xy^2z\)

\(y^2z^2+z^2x^2\ge2\sqrt{x^2y^2z^{^4}}=2xyz^2\)

\(x^2y^2+z^2x^2\ge2\sqrt{x^4y^2z^2}=2x^2yz\)

Cộng theo vế và rút gọn: \(x^2y^2+y^2z^2+z^2x^2\ge x^2yz+xy^2z+xyz^2\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2-x^2yz-xy^2z-xyz^2\ge0\left(đpcm\right)\)

14 tháng 3 2019

\(\left(xy-yz\right)^2=x^2y^2-2xy^2z+y^2z^2\ge0\)

\(\Rightarrow x^2y^2+y^2z^2\ge2xy^2z\)

Thiết lập hai BĐT còn tại tương tự và cộng theo vế và chia cho 2:

\(x^2y^2+y^2z^2+z^2x^2\ge x^2yz+y^2xz+z^2xy\)

Chuyển vế ta có đpcm.

Dấu "=" xảy ra khi \(xy=yz=zx\Leftrightarrow x=y=z\)

11 tháng 1 2019

Áp  dụng bđt Svac ta có:

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\ge\frac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}=9\)

25 tháng 8 2021

gg oaoa

NV
12 tháng 11 2018

\(\dfrac{x^2-2xy+y^2+2z\left(x-y\right)+z^2}{\left(x-y\right)^2-z^2}=\dfrac{\left(x-y\right)^2+2z\left(x-y\right)+z^2}{\left(x-y-z\right)\left(x-y+z\right)}\)

\(=\dfrac{\left(x-y+z\right)^2}{\left(x-y-z\right)\left(x-y+z\right)}=\dfrac{x-y+z}{x-y-z}\)