K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2019

Ta có : \(\frac{x}{x+y}>\frac{x}{x+y+z}.\)

\(\frac{y}{y+z}>\frac{y}{x+y+z}\)

\(\frac{z}{z+x}>\frac{z}{x+y+z}\)

\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\)\(\frac{x+y+z}{x+y+z}=1\)

Hay \(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>1\)\(\left(1\right)\)

Lại có : \(\frac{x}{x+y}< \frac{x+z}{x+y+z}\)

\(\frac{y}{y+z}< \frac{y+x}{x+y+z}\)

\(\frac{z}{z+x}< \frac{z+y}{x+y+z}\)

\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< \frac{2x+2y+2z}{x+y+z}=2\)

Hay \(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< 2\)\(\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow1< \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< 2\)\(\left(đpcm\right)\)

28 tháng 3 2016

Bn xem lại  đề 

25 tháng 3 2019

sai đề rồi bạn ạ

VD giả sử x=1;y=2;z=5 thì ta sẽ có \(\frac{3}{7}>\frac{1}{2}\)

là vô lí

20 tháng 10 2017

Vì \(x< y\Rightarrow\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) (*)

Thêm ab vào hai vế của (*) : ad + ab < bc + ab

                                             => a(b+d) < b(a+c)

                                            => \(\frac{a}{b}< \frac{a+c}{b+d}\) 

                                            => x < z (1)

Thêm cd vào hai vế của (*): ad + cd < bc + cd

                                          => d(a + c) < c(b + d)

                                          => \(\frac{a+c}{b+d}< \frac{c}{d}\)  

                                          => z < y (2)

Từ (1) và (2) => x < z < y

7 tháng 11 2017

Vì x<y⇒ab <cd ⇒ad<bc (*)

Thêm ab vào hai vế của (*) : ad + ab < bc + ab

                                             => a(b+d) < b(a+c)

                                            => ab <a+cb+d  

                                            => x < z (1)

Thêm cd vào hai vế của (*): ad + cd < bc + cd

                                          => d(a + c) < c(b + d)

                                          => a+cb+d <cd   

                                          => z < y (2)

Từ (1) và (2) => x < z < y

22 tháng 8 2016

Ta có x = \(\frac{2a}{2m}\)\(\frac{a+b}{2m}\)= z

y = \(\frac{2b}{2m}\)\(\frac{a+b}{2m}\)= z

22 tháng 8 2016

Do x < y => a/m < b/m

=> a/m + a/m < a/m + b/m < b/m + b/m

=> 2x < a+b/m < 2y

=> x < a+b/m : 2 < 2y

=> x < a+b/m . 1/2 < y

=> x < a+b/2m < y

Chứng tỏ ...

16 tháng 12 2018

Ta có:  (đk: x,y,z,t > 0)

 \(M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)

Vậy \(M>1^{\left(đpcm\right)}\)

Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y

Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y

18 tháng 8 2016

Vì x<y nên :                                           

\(\frac{a}{m}< \frac{b}{m}\)                                                            #\(\frac{a}{m}< \frac{b}{m}\)

\(\frac{a}{m}+\frac{a}{m}< \frac{b}{m}+\frac{a}{m}\)                                           \(\frac{a}{m}+\frac{b}{m}< \frac{b}{m}+\frac{b}{m}\)

\(\frac{2a}{m}< \frac{a+b}{m}\)                                                        \(\frac{a+b}{m}< \frac{2b}{m}\)

\(\frac{2a}{2m}< \frac{a+b}{2m}\)                                                        \(\frac{a+b}{2m}< \frac{2b}{2m}\)

\(\frac{a}{m}< \frac{a+b}{2m}\)                                                           \(\frac{a+b}{2m}< \frac{b}{m}\)

=> x < z ( 1 )                                                                  => z < y ( 2)

TỪ (1) VÀ (2) TA SUY RA X < Z < Y

( Nếu có chỗ nào bạn ko hỉu thì ib cho mik nha mk sẽ chỉ bn ha )  ( ý mà nhớ là ..... ( ai cx muốn hì....hì...) )

2 tháng 8 2017

Theo đề bài ta có x = \(\frac{a}{m}\) , y = \(\frac{b}{m}\)(  a, b, m \(\in\) Z, m > 0 )

Vì x < y nên ta suy ra a < b

Ta có : x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\), , z = \(\frac{a+b}{2m}\)

Vì a < b => a + a < a +b => 2a < a + b

Do 2a< a +b nên x < z (1)

Vì a < b => a + b < b + b => a + b < 2b

Do a+b < 2b nên z < y   (2)

Từ (1) và (2) ta suy ra x < z< y