Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(A=\left|x-500\right|+\left|x-300\right|=\left|x-500\right|+\left|300-x\right|\)
\(\ge\left|x-500+300-x\right|=200\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-500\right).\left(300-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-500\ge0\\300-x\ge0\end{cases}}\) hoặc \(\hept{\begin{cases}x-500\le0\\300-x\le0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge500\\x\le300\end{cases}}\) hoặc \(\Leftrightarrow\hept{\begin{cases}x\le500\\x\ge300\end{cases}}\) (vô lí)
Nên \(300\le x\le500\)
Vậy Amin = 200 khi và chỉ khi \(300\le x\le500\)
a) Ta có : \(|x+y|\le|x|+|y|\)
\(\Leftrightarrow\left(x+y\right)^2\le\left(|x|+|y|\right)^2\)
\(\Leftrightarrow x^2+2.x.y+y^2\le x^2+2.|x|.|y|+y^2\)
\(\Leftrightarrow xy\le|x||y|\)
Do bất đẳng thức cuối đúng nên bất đẳng thức đầu đúng.
Dấu bằng xảy ra khi \(xy=|x||y|\Rightarrow xy\ge0\)
b) Từ câu (a) ta có: \(|x-y|+|y|\ge|x-y+y|=|x|\)
\(\Rightarrow|x-y|\ge|x|-|y|\)
Dấu bằng xảy ra khi A-B và B cùng dấu.
\(\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y+y+z+x+z}{z+x+y}=\frac{2\left(x+y+z\right)}{x+y+z}=2\) Tính chất tỷ lệ thức cứ nhó và cho vào thôi
\(\frac{x+y}{z}=2\Rightarrow\left(x+y\right)=2z\Rightarrow K=2\)vậy thôi
vì (x+3)^2 luôn lớn hơn hoặc =0 và GTTĐ y-2 luôn lớn hơn hoặc =0 nên Giá trị NN của A sẽ xảy ra tại x+3=0 và y-2 =0 . vậy x=-3 và y=2 và GTNN của A là 2. mong bạn sẽ k cho mình
Bài 1:
Giải:
Ta có: \(\frac{1+3y}{12}=\frac{1+7y}{4x}=\frac{1+1+3y+7y}{12+4x}=\frac{2+10y}{2\left(6+2x\right)}=\frac{2\left(1+5y\right)}{2\left(6+2x\right)}=\frac{1+5y}{6+2x}=\frac{1+5y}{5x}\)
+) Xét \(1+5y=0\Rightarrow y=\frac{-1}{5}\Rightarrow1+5y=0\) ( loại )
+) Xét \(1+5y\ne0\Rightarrow6+2x=5x\)
\(\Rightarrow5x-2x=6\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
Mà \(\frac{1+3y}{12}=\frac{1+5y}{5x}\)
\(\Rightarrow\frac{1+3y}{12}=\frac{1+5y}{10}\)
\(\Rightarrow10\left(1+3y\right)=12\left(1+5y\right)\)
\(\Rightarrow10+30y=12+60y\)
\(\Rightarrow10-12=60y-30y\)
\(\Rightarrow-2=30y\)
\(\Rightarrow y=\frac{-1}{15}\)
Vậy \(x=2,y=\frac{-1}{15}\)
Với mọi x thì A= |x+5/8 | \(\ge\)0 .
Dấu ''='' xảy ra khi và chỉ khi x+5/8= o \(\Leftrightarrow\)x= -5/8.
Vậy GTNN (A)= 0 khi x= -5/8.
Ta có:
\(A=\left|x+\frac{5}{8}\right|\ge0\)
Dấu "=" xảy ra khi và chỉ khi x = -5/8
Vậy Min A = 0 khi và chỉ khi x = -5/8
phần chứng minh sai đề
\(A=\left|x-500\right|+\left|x-300\right|\)
\(\ge\left|x-500+300-x\right|=200\)
\(\Rightarrow A\ge200\)
Dấu = khi \(\left(x-500\right)\left(x-300\right)\ge0\)\(\Rightarrow300\le x\le500\)
\(\Rightarrow\begin{cases}300\le x\le500\\\left(x-500\right)\left(x-300\right)=0\end{cases}\)\(\Rightarrow\begin{cases}x=500\\x=300\end{cases}\)
Vậy MinA=200 khi \(\begin{cases}x=500\\x=300\end{cases}\)