K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
1 tháng 3 2021

ta sẽ chứng minh bằng quy nạp

với n=0 ta có \(3^{2n+1}+2^{n+2}=3^1+2^2=7\text{ chia hết cho 7}\)

giả sử điểu trên đúng với n=k tức là \(3^{2k+1}+2^{k+2}\text{ chia hết cho 7}\)

ta chứng minh nó đúng với n=k+1

  ta có \(3^{2\left(k+1\right)+1}+2^{k+1+2}=3^{2k+3}+2^{k+3}=9.3^{2k+1}+2.2^{k+2}=7.3^{2k+1}+2\left(3^{2k+1}+2^{k+2}\right)\)

ta có \(\hept{\begin{cases}7.3^{2k+1}\text{ chia hết cho 7}\\2\left(3^{2k+1}+2^{k+2}\right)\text{ chia hết cho 7}\end{cases}\Rightarrow3^{2\left(k+1\right)+1}+2^{k+1+2}\text{ chia hết cho 7}}\)

Vậy theo nguyên lí quy nạp, ta có đpcm

14 tháng 2 2016

moi hok lop 6 thoi

14 tháng 2 2016

Với n = 1, ta có 
1^3 + 9.1^2 + 2.1 = 12 chia hết cho 6 
Giả sử khẳng định đúng với n = k, tức là: 
k^3 + 9k^2 + 2k chia hết 6 
Đặt k^3 + 9k^2 + 2k = 6Q 
Ta sẽ CM khẳng định đúng với n = k + 1, ta có: 
(k + 1)^3 + 9(k + 1)^2 + 2(k + 1) 
= k^3 + 3k^2 + 3k + 1 + 9k^2 + 18k + 9 + 2k + 1 
= (k^3 + 9k^2 + 2k) + 3k^2 + 18k + 3k + 12 
= 6Q + (3k^2 + 21k) + 12 
= 6Q + 3k(k + 7) + 12 
= 6Q + 3k[(k + 1) + 6] + 12 
= 6Q + 3k(k + 1) + 6.3k + 12 
Vì k và k + 1 là 2 số nguyên liên tiếp nên: 
k(k + 1) chia hết cho 2 
=> 3k(k + 1) chia hết cho 3.2 = 6 
=> 6Q + 3k(k + 1) + 6.3k + 12 chia hết cho 6 
Vậy theo nguyên lý quy nạp ta chứng minh được 
n^3 + 9n^2 + 2n chia hết 3

20 tháng 11 2014

B,

6n+7 = 6n + 3 +4= 3(2n+1)+4 chia hết cho 2n + 1

Suy ra 4 chia hết cho 2n + 1 Suy ra 2n +1 thuộc Ư (4)) và n là số lẻ

Ư (4) ={ 1;2;4}

Vì n là số lẻ nên

2n + 1 =1 

 2n       =1-1

2n        =0

 n          = 0 : 2 =0

Vậy n =0

30 tháng 12 2015

A3n+7 chia het cho n+2

3n-12+5 chia het cho n+2

(3n-12)+5 chia het cho n+2

3(n-4)+5 chia het cho n+2

=>5 chia het cho n+2

=>n+2 thuoc (U)5={1;-1;5;-5}

Neu:n+2=1=>n=-1(loai)

Neu:n+2=-1=>n=-3(loai)

Neu:n+2=5=>n=3

Neu:n+2=-5=>n=-7(loai)

Vay:n=3

10 tháng 4 2016

"Mượn 1 con lạc đà nữa, khi đó ông chủ sẽ có 18 con. Anh cả được ½ số lạc đà, nghĩa là sẽ được 18 : 2 = 9 con. Anh hai được 1/3 số lạc đà, nghĩa là sẽ được 18 : 3 = 6 con. Anh út được 1/9 số lạc đà, nghĩa là sẽ được 18 : 9 = 2 con.

Khi đó, ông chủ còn lại 18 – (9 + 6 + 2) = 1 con. Đây chính là con đã mượn về. Do đó sau khi đem trả lại, số lạc đà mỗi người tương ứng sẽ là 9, 6, 2 con".

26 tháng 12 2015

Ta có:

3^n+2-2^n+2+3^n-2^n

=3^n+2+3^n-(2^n+2+2^n)

=3^n(3^2 +1)-2^n(2^2 +1)

=3^n.10-2^n.5=3^n.10-2^(n-1).10

=(3^n-2^(n-1)).10 chia het cho 10

Tick nhé

n+4:n+2

n+2+2:n+2

ma n+2:n+2

suy ra 2:n+2

n+2 là ước của 2

ước của 2 là :1,-1,2,-2

n+2=1 suy ra n=1-2 suy ra n=?

các trường hợp khác làm tương tự nhà và cả phần b nữa

3n+7:n+1

(3n+3)+3+7:n+1

3(n+1)+10:n+1

ma 3(n+1):n+1

suy ra 10:n+1 va n+1 thuoc uoc cua 10

den day lam nhu phan tren la duoc 

nhớ **** mình nha

6 tháng 1 2018

n + 4\(⋮\)n+2
=> ( n + 2) + 2 \(⋮\)n + 2  mà n + 2\(⋮\)n+2
=>2 \(⋮\)n+ 2
=> n +2\(\in\)Ư(2)={1;2}
=> n \(\in\){ -1:0} mà n \(\in\)N
=> n\(\in\){0}
    Vậy n= 0