Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(5^{n+2}+26.5^n+8^{2n+1}\)
=>A=\(5^n.25+26.5^n+64^n.8\)
=>A=\(5^n.\left(25+26\right)+64^n.8^{ }\)
=>A=\(5^n.51+64^n.8^{ }\)
=>A=\(5^n.\left(59-8\right)+64^n.8^{ }\)
=>A=\(5^n.59-5^n.8+64^n.8\)
=>A=\(5^n.59+8.\left(64^n-5^n\right)\)
vì \(5^n.59chiahếtcho59\)
\(64^n-5^n\)chia hết cho 64-5=59
=>A chia hết cho 59(đpcm)
chúc bạn hộc tốt
a, 11n+2+122n+1
= 11n.121+12.122n
= 11n.(133-12)+12.122n
= 11n.133-11nn .12+12.122n
=12.(144n-11n)+11n. 133
Có 144nn-11n \(⋮\)144-11=133
11n.133\(⋮\)133
=> dpcm
Cho $n=1$ thì $A$ không chia hết cho $59$. Bạn xem lại đề nhé.
a,bn gõ đề sai nhé: phải là 11n+2 ms làm đc
Ta có: \(11^{n+2}+12^{2n+1}=11^n.11^2+12^{2n}.12=11^n.121+144^n.12\)
\(=11^n.\left(133-12\right)+144^n.12=11^n.133-11^n.12+144^n.12\)
\(=11^n.133+144^n.12-11^n.12=11^n.133+12.\left(144^n-11^n\right)\)
Vì \(144^n-11^n=\left(144-11\right).\left(144^{n-1}+144^{n-2}11+144^{n-3}11^2+....+144^211^{n-3}+14411^{n-2}+11^{n-1}\right)\) nên 144n-11n luôn chia hết cho 133
Mà 11n.133 cũng chia hết cho 133
=>\(11^{n+2}+12^{2n+1}\) chia hết cho 133 (đpcm)
b,\(5^{n+2}+26.5^n+8^{2n+1}\)
\(=5^n.5^2+26.5^n+8^{2n}.8=5^n.25+26.5^n+64^n.8\)
\(=5^n.25+26.5^n+64^n.8\)
\(=5^n.25+34.5^n-8.5^n+64^n.8=5^n.25+34.5^n+64^n.8-8.5^n\)
\(=59.5^n+8.\left(64^n-5^n\right)\)
Vì \(64^n-5^n=\left(64-5\right).\left(64^{n-1}+64^{n-2}5+....+64.5^{n-2}+5^{n-1}\right)\) nên chia hết cho 59
Mà 59.5n cũng chia hết cho 59
=>\(5^{n+2}+26.5^n+8^{2n+1}\) chia hết cho 59 (đpcm)
Lời giải:
a)
\(A=11^{n+2}+12^{2n+1}\)
Ta thấy \(12^2\equiv 11\pmod {133}\Rightarrow 12^{2n+1}\equiv 11^n.12\pmod {133}\)
Do đó \(A=11^{n+2}+12^{2n+1}\equiv 11^{n+2}+11^n.12\pmod {133}\)
\(\Leftrightarrow A\equiv 11^n(11^2+12)\equiv 11^n.133\equiv 0\pmod {133}\)
Vậy \(A\vdots 133\) (đpcm)
b) Đề bài không rõ
c)
Ta thấy: \(5^{2}=25\equiv 6\pmod {19}\)
\(\Rightarrow 7.5^{2n}\equiv 7.6^n\pmod {19}\)
\(\Rightarrow 7.5^{2n}+12.6^n\equiv 7.6^n+12.6^n\equiv 19.6^n\equiv 0\pmod {19}\)
Vậy \(7.5^{2n}+12.6^n\vdots 19\) (đpcm)
Ta có (a + b + c)2 \(\ge0\forall a;b;c\inℝ\)
=> a2 + b2 + c2 + 2ab + 2bc + 2ca \(\ge\)0
=> a2 + b2 + c2 \(\ge\)0 - (2ab + 2bc + 2ca)
=> a2 + b2 + c2 \(\le\)2ab + 2bc + 2ca
=> a2 + b2 + c2 \(\le\)2(ab + bc + ca)
Dấu "=" xảy ra <=> a + b + c = 0
Xí bài 2 ý a) trước :>
4x2 + 2y2 + 2z2 - 4xy - 4xz + 2yz - 6y - 10z + 34 = 0
<=> ( 4x2 - 4xy + y2 - 4xz + 2yz + z2 ) + ( y2 - 6y + 9 ) + ( z2 - 10z + 25 ) = 0
<=> [ ( 4x2 - 4xy + y2 ) - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0
<=> [ ( 2x - y )2 - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0
<=> ( 2x - y - z )2 + ( y - 3 )2 + ( z - 5 )2 = 0
Ta có : \(\hept{\begin{cases}\left(2x-y-z\right)^2\\\left(y-3\right)^2\\\left(z-5\right)^2\end{cases}}\ge0\forall x,y,z\Rightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)
Thế vào T ta được :
\(T=\left(4-4\right)^{2014}+\left(3-4\right)^{2014}+\left(5-4\right)^{2014}\)
\(T=0+1+1=2\)
Lời giải:
$A=5^{n+2}+26.5^n+8^{2n+1}=5^n(5^2+26)+8^{2n+1}$
$=51.5^n+64^n.8$
$\equiv 51.5^n+5^n.8\equiv 5^n(51+8)\equiv 5^n.59\equiv 0\pmod {59}$
Ta có đpcm
\(A=5^{n+2}+26.5^n+8^{2n+1}\left(n\in N\right)\)
\(=25.5^n+26.5^n+8.64^n\)
\(=5^n\left(25+26\right)+8.64^n\)
\(=5^n\left(59-8\right)+8.64^n\)
\(=59.5^n+8\left(64^n-5^n\right)\)
\(=59.5^n+8\left(64-5\right)\left(64^{n-1}+64^{n-2}.5+...\right)\)
\(=59.5^n+8.59\left(64^{n-1}+64^{n-2}.5+...\right)\)
\(=59\left[5^n+8\left(64^{n-1}+64^{n-2}.5+...\right)\right]⋮59\)
Vậy \(A⋮59\)\(\forall n\in N\)(đpcm)