Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Giải
Ta chứng minh với mọi x, y luôn có : \(\frac{x+y}{2}\cdot\frac{x^3+y^3}{2}\le\frac{x^4+y^4}{2}\) (1)
\(\Rightarrow\left(1\right)\Leftrightarrow\left(x+y\right)\left(x^3+y^3\right)\le2\left(x^4+y^4\right)\)
\(\Leftrightarrow xy\left(x^2+y^2\right)\le x^4+y^4\)
\(\Leftrightarrow\left(x-y\right)^2\left[\left(\frac{x+y}{2}\right)^2+\frac{3y^2}{4}\right]\ge0\)
ÁP DỤNG (1) ta được
\(\frac{a+b}{2}\cdot\frac{a^2+b^2}{2}\cdot\frac{a^3+b^3}{2}=\left[\frac{a+b}{2}\cdot\frac{a^3+b^3}{2}\right]\cdot\frac{a^2+b^2}{2}\)
\(\Leftrightarrow\left[\frac{a+b}{2}\cdot\frac{a^3+b^3}{2}\right]\cdot\frac{a^2+b^2}{2}\le\frac{a^4+b^4}{2}\cdot\frac{a^2+b^2}{2}\le\frac{a^6+b^6}{2}\left(đpcm\right)\)
2. Ta biến đổi các Đẳng thức : \(a^2+b^2+c^2-\left(ab+bc+ca\right)\ge0\)
\(\Leftrightarrow\left(\frac{a^2}{2}-ab+\frac{b^2}{2}\right)+\left(\frac{b^2}{2}-bc+\frac{c^2}{2}\right)-\left(\frac{c^2}{2}-ca+\frac{a^2}{2}\right)\ge0\)
\(\Leftrightarrow\left(\frac{a}{\sqrt{2}}-\frac{b}{\sqrt{2}}\right)^2+\left(\frac{b}{\sqrt{2}}-\frac{c}{\sqrt{2}}\right)+\left(\frac{c}{\sqrt{2}}-\frac{a}{\sqrt{2}}\right)\ge0\left(đpcm\right)\)
a) \(a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng với mọi a,b,c)
b)\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)
Câu a :
Ta có :
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
Dấu = xảy ra khi \(a=b\)
Câu b :
\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( đúng )
Dấu = xảy ra khi \(a=b=c\)
Cô-si đơn giản =)
Có \(\frac{a+b}{2}\ge\sqrt{ab}\)
Nên
\(a+b\ge2\sqrt{ab}\Leftrightarrow\left(a+b\right)^2\ge4ab\left(1\right)\)
\(a+c\ge2\sqrt{ac}\Leftrightarrow\left(a+c\right)^2\ge4ac\left(2\right)\)
\(c+b\ge2\sqrt{bc}\Leftrightarrow\left(b+c\right)^2\ge4bc\left(3\right)\)
Cộng (1), (2), (3) vế theo vế
\(\Rightarrow2a^2+2b^2+2c^2+2ab+2ac+2bc\ge4ab+4ac+4bc\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2ac+2bc\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac+bc\)
Mà Theo đề \(a+b+c+ab+bc+ac=36\) (a=b=c=3) \(\Leftrightarrow ab+bc+ac=27\)
\(\Rightarrow a^2+b^2+c^2\ge27\left(đpcm\right)\)
Áp dụng bđt phụ \(x^2+y^2+z^2+1\ge\frac{2\left(x+y+z+xy+yz+zx\right)}{3}\)nhé =))
a) Ta có: \(\frac{a^2}{a+b}-\frac{b^2}{a+b}+\frac{b^2}{b+c}-\frac{c^2}{b+c}+\frac{c^2}{c+a}-\frac{a^2}{c+a}\) \(=a-b+b-c+c-a=0\)
\(\Rightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}=\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}\)
\(\Rightarrow2\left(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\right)=\frac{a^2}{a+b}+\frac{b^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{b+c}+\frac{c^2}{c+a}+\frac{a^2}{c+a}\)\(\ge\frac{2ab}{a+b}+\frac{2bc}{b+c}+\frac{2ca}{c+a}\)
\(\Rightarrowđpcm\)
Dấu "=" \(\Leftrightarrow a=b=c\)
b) \(a^2b^2\left(a^2+b^2\right)=\frac{1}{2}\cdot ab\cdot2ab\cdot\left(a^2+b^2\right)\le\frac{1}{2}\cdot\frac{\left(a+b\right)^2}{4}\cdot\frac{\left(2ab+a^2+b^2\right)^2}{4}=2\)
Dấu "=" \(\Leftrightarrow a=b=1\)
Bài 1:
Xét A= \(a^2+b^2+c^2-ab-ac-bc\)
\(2A=2a^2+2b^2+2c^2-2ab-2ac-2bc\\ =\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\\ =\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\\ \Rightarrow A\ge0\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Bài 2:
Xét \(A=a^2+b^2+c^2+\frac{3}{4}-a-b-c\)
\(\Rightarrow A=\left(a^2-a+\frac{1}{4}\right)+\left(b^2-b+\frac{1}{4}\right)+\left(c^2-c+\frac{1}{4}\right)\\ =\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2\ge0\forall a,b,c\\ \Rightarrow a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)
Lại copy!!!
Giải:
Áp dụng BĐT Bunhiacopski
Xét cặp số \(\left(1,1,1\right)\) và \(\left(a,b,c\right)\) ta có:
\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(1.a+1.b+1.c\right)^2\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ac\right)\)
\(\Rightarrow a^2+b^2+c^2\ge ab+ac+bc\) (Đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
a) Xét hiệu ta có:
\(a^2+b^2+c^2-ab-bc-ca\)
\(=\frac{1}{2}.\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)\)
\(=\frac{1}{2}.\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\right]\)
\(=\frac{1}{2}.\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\); \(\left(b-c\right)^2\ge0\forall b,c\); \(\left(a-c\right)^2\ge0\forall a,c\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\forall a,b,c\)
\(\Rightarrow\frac{1}{2}.\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\ge0\forall a,b,c\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)
a,Ta có:\(a^2+b^2\ge2ab\)
\(b^2+c^2\ge2bc\)
\(a^2+c^2\ge2ca\)
Cộng theo từng vế ba bđt trên,ta được:
\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac+bc\)
Dấu "="xảy ra khi a=b=c
b,\(a^3+b^3\ge ab\left(a+b\right)\)(chia cả 2 vế cho a+b)
\(\Leftrightarrow a^2-ab+b^2\ge ab\)
\(\Leftrightarrow a^2-ab+b^2-ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)đúng với mọi a,b
Dấu"=" xảy ra khi a=b
c,\(a^2+b^2+c^2\ge a\left(b+c\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+b^2+c^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+b^2+c^2\ge0\)đúng với mọi a,b,c
Dấu"=" xảy ra khi a=b=c=0
không cần đk là a,b,c là số thực cũng được @@
Sử dụng bất đẳng thức phụ x2+y2≥2xyx2+y2≥2xy
chứng minh : x2+y2≥2xy<=>(x−y)2≥0x2+y2≥2xy<=>(x−y)2≥0*đúng*
Áp dụng vào bài toán ta được :
2.LHS≥ab+bc+ca+ab+bc+ca=2(ab+bc+ca)2.LHS≥ab+bc+ca+ab+bc+ca=2(ab+bc+ca)
<=>LHS≥ab+bc+ca<=>LHS≥ab+bc+ca
Dấu = xảy ra <=>a=b=c
\(a^2+b^2\ge ab+bc+ca.\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(đpcm\right)\)