Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
n lẻ
=> n - 1 và n + 1 chẵn
Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8
=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)
1) Ta có: \(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a+1\right)\left(a^2+2a\right)=a\left(a+1\right)\left(a+2\right)\)
Với \(a\in Z\)thì \(a\left(a+1\right)\left(a+2\right)\)là tích của 3 số nguyên liên tiếp nên\(⋮6\)
2)Với \(a\in Z\)Ta có:\(a\left(2a-3\right)-2a\left(a+1\right)=a\left(2a-3-2a-2\right)=-5a⋮5\)
3) Ta có:\(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1\)lớn hơn 0 với mọi x
4) Ta có: \(x^2-x+1=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)lớn hơn 0 với mọi x
a, n. (2n -3 ) -2n .(n + 1 ) chia hết cho 5
b, n. ( n + 5 ) - (n -3 ) . ( n + 2 ) chia hết cho 6
Ta có n3 - n=n( n2-1)=(n-1)n(n+1)
Mà tích ba số tự nhiên liên tiếp nên chia hết cho 2 và 3 => chia hết cho 6
n3-19n=n3-n-18n=(n2-1)n-18n=(n-1)n(n+1)-18n
trong 3 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 3
=>(n-1)n(n+1) chia hết cho 3
trong 3 số tự nhiên liên tiếp sẽ có ít nhất 1 số chia hết cho 2
=>(n-1)n(n+1) chia hết cho 2
vì (2;3)=1=>(n-1)n(n+1) chia hết cho 6
=>(n-1)n(n+1)=6k
=>(n-1)n(n+1)-18n=6k-18n=6(k-3n) chia hết cho 6
=>n3-19n chia hết cho 6
=>đpcm
A = n³-19n = n³-n - 18n = n(n²-1) - 18n = n(n-1)(n+1) - 18n
n(n-1)(n+1) là 3 số nguyên liên tiếp nên chia hết cho 3, ngoài ra ít nhất 1 số chẳn nên chia hết cho 2 => n(n-1)(n+1) chia hết cho 6, 18n chia hết cho 6
=> A chia hết cho 6