K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
S
0
LH
0
BU
0
ND
1
WR
5 tháng 6 2017
xét 2 th
th1)\(n⋮11\)
\(=>\left(n+14\right)\left(n+3\right)không⋮11=>\left(n+14\right)\left(n+3\right)+22không⋮11=>không⋮121.\)
th2)\(nkhông⋮11\)
\(\left(n+14\right)\left(n+3\right)+22=n^2+17n+42+22=\left(n^2+6n+9\right)+11n+55=\left(n+3\right)^2+11n+5.\)
nếu \(\left(n+3\right)⋮11=>\left(n+3\right)^2⋮121\)
khi đó n chia 11 dư 8=>11n+55 chia 121 dư 22 =>đpcm
nếu \(\left(n+3\right)^2không⋮11=>đpcm\)
Ta co n3 + 3n2 - 4n - 2010n = n(n - 1)(n + 4) - 2010n
Ta co 2010n chia het cho 6
n(n-1) chia het cho 2 nen n(n-1)(n+4) chia het cho 2
Voi n = 3k thi n chia het cho 3 (1)
Voi n = 3k+ 1 thi n-1 chia het cho 3 (2)
Voi n = 3k + 2 thi (n + 4) chia het cho 3 (3)
Tu do n(n-1)(n+4) chia het cho 3
Vay n3 + 3n2 - 2014n chia het cho 6