Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4n+3\right)^2-25\)
\(=\left(4n+3\right)^2-5^2\)
\(=\left(4n+3-5\right)\left(4n+3+5\right)\)
\(=\left(4n-2\right)\left(4n+8\right)\)
a) \(A=\left(4n+3\right)^2-5^2=\left(4n+3-5\right)\left(4n+3+5\right)=\left(4n-2\right)\left(4n+8\right)\)
\(=8\left(n-1\right)\left(n+2\right)\). Vì A chứa thừa số 8 nên A chia hết cho 8
b) \(B=\left(2n+3\right)^2-3^2=\left(2n+3-3\right)\left(2n+3+3\right)=2n\left(2n+6\right)=4n\left(n+3\right)\)
Vì B chứa thừa số 4 nên B chia hết cho 4
\(n^3+n^2+2n^2+2n\)
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(n\left(n+1\right)\left(n+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3. Mà 2 và 3 nguyên tố cùng nhau nên tích chia hết cho 6.
c) \(n^2+14n+49-n^2+10n-25\)
\(=24n+24=24\left(N+1\right)\) CHIA HẾT CHO 24
a, Ta có : \(4n^2.\left(n+2\right)+4n.\left(n+2\right)\)
\(=\left(n+2\right).\left(4n^2+4n\right)\)
\(=4n.\left(n+2\right).\left(n+1\right)\)
\(=4n.\left(n+1\right).\left(n+2\right)⋮4\)
\(n.\left(n+1\right).\left(n+2\right)\) là tích của ba số liên tiếp
\(\Rightarrow n.\left(n+1\right).\left(n+2\right)⋮2\) và \(3\)
mà \(n.\left(n+1\right).\left(n+2\right)⋮\left(2.3\right)\)
Vậy \(4n^2.\left(n+2\right)+4n.\left(n+2\right)⋮24\left(đpcm\right)\)
b,
+ Thực hiện phép tính :
6n^2 + n - 1 - 6n^2 + 4n 3n + 2 2n - 1 -3n - 1 - -3n - 2 1
Ta có : \(\dfrac{6n^2+n-1}{3n+2}=2n-1+\dfrac{1}{3n+2}\)
Để \(\left(6n+n-1\right)⋮\left(3n+2\right)\) thì \(\dfrac{1}{3n+2}\in Z\)
\(\Rightarrow3n+2\inƯ\left(1\right)\)
\(\Rightarrow3n+2\in\left\{\pm1\right\}\)
Ta có bảng sau :
3n+2 | 1 | -1 |
n | \(-\dfrac{1}{3}\) | -1 |
Vậy n = -1
(4n + 3)2 - 25
= (4n + 3 - 5)(4n + 3 + 5)
= (4n - 2)(4n + 8)
= 8(2n - 1)(n + 2)
Vì 8 \(⋮\) 8 nên 8(2n - 1)(n + 2) \(⋮\) 8 (đpcm)
Vậy 8(2n - 1)(n + 2) \(⋮\) 8
Chúc bn học tốt
Sửa lại: Vậy (4n + 3)2 - 25 \(⋮\) 8 với mọi số nguyên n
Kết luận nhầm xíu