\(n^2+4n+3\)chia hết cho 8

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2019

\(n^2+4n+3=n^2+2.n.2+2^2-1\)

\(=\left(n+2\right)^2-1\)

\(=\left(n+2-1\right).\left(n+2+1\right)\)

\(=\left(n-1\right).\left(n+3\right)⋮8\)

3 tháng 9 2019

Ta có n2+4n+3=(n+1)(n+3)

Vì n là số lẻ nên (n+1)và (n+3) là hai số tự nhiên chẵn liên tiếp

Do đó một trong hai số có một số chia hết cho 4 khi đó số còn lại chia hết cho 2

Vậy tích (n+1)(n+3) chia hết cho 8 và ta có điều phải chứng minh

1 tháng 3 2017

Ta có : 3n + 2 - 2n + 2 + 3n - 2n 

= (3n + 2 + 3n) - (2n + 2 + 2n)

= 3n(32 + 1) - 2n - 1(23 + 2)

= 3n.10 - 2n - 1.10

= 10.(3n - 2n - 1)

Mà 3n - 2n - 1 thuộc Z

Nên 10.(3n - 2n - 1) chia hết cho 10

Vậy  3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10

19 tháng 9 2015

\(3^{n+2}-2^{n+2}+3^n-2^n=3^n.9-2^n.4+3^n-2^n\)

\(=3^n.\left(9+1\right)-2^n.\left(4+1\right)=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right):10\)

15 tháng 1 2019

Ta có: n3-n=n(n2-1)=n.(n-1).(n+1)

Vì đây là tích ba số tự nhiên liên tiếp nên nó chia hết cho 2 và 3 \(\Rightarrow\)n3-n sẽ chia hết cho 6

\(\Rightarrow\)n3-n+2 chia 6 dư 2

Vậy n3-n+2 không chia hết cho 6 với mọi số tự nhiên n

Y
9 tháng 2 2019

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\left(3^2+1\right)-2^{n-1}\left(2^3+2\right)\)

\(=3^n\cdot10-2^{n-1}\cdot10\)

\(=10\left(3^n-2^{n-1}\right)⋮10\forall n\)

9 tháng 2 2019

3n+2-2n+2+3n-2n

=(3n+2+3n)+(-2n+2-2n)

=3n.(32+1)-2n.(22+1)

=3n.10-2n.5

=3n.10-2n-1.10

=10.(3n-2n-1) chia hết cho 10

Vậy 3n+2-2n+2+3n-2n chia hết cho 10

24 tháng 4 2017

Chứng minh chia hết cho 2:

Ta có: \(3^{2^{4n+1}}\) là số lẻ và \(5\)là số lẻ nên

\(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)⋮2\left(1\right)\)

Chứng minh chia hết cho 11: (dùng \(\exists\)làm ký hiệu đồng dư)

Theo Fecma vì 11 là số nguyên tố nên

\(\Rightarrow3^{11-1}=3^{10}\exists1\left(mod11\right)\left(2\right)\)

Ta lại có: \(2^{4n+1}=2.16^n\exists2\left(mod10\right)\)

\(\Rightarrow2^{4n+1}=10k+2\)

Kết hợp với (2) ta được

\(\Rightarrow3^{4n+1}=3^{10k+2}=9.3^{10k}\exists9\left(mod11\right)\left(3\right)\)

Tương tự ta có:

\(\Rightarrow2^{11-1}=2^{10}\exists1\left(mod11\right)\left(4\right)\)

Ta lại có: 

\(3^{4n+1}=3.81^n\exists3\left(mod10\right)\)

\(\Rightarrow3^{4n+1}=10l+3\)

Kết hợp với (4) ta được

\(2^{3^{4n+1}}=2^{10l+3}=8.2^{10l}\exists8\left(mol11\right)\left(5\right)\)

Từ (3) và (5) \(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)\exists\left(9+8+5\right)\exists22\exists0\left(mod11\right)\)

\(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)⋮11\left(6\right)\)

Từ (1) và (6) \(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)⋮\left(2.11\right)=22\)

AH
Akai Haruma
Giáo viên
6 tháng 11 2017

Lời giải:

a) Ta có:

\(n^2+4n+3=n^2+n+3(n+1)=n(n+1)+3(n+1)=(n+1)(n+3)\)

Vì $n$ lẻ nên đặt \(n=2k+1(k\in\mathbb{N})\)

Khi đó \(n^2+4n+3=(n+1)(n+3)=(2k+1+1)(2k+1+3)=4(k+1)(k+2)\)

Vì $k+1,k+2$ là hai số tự nhiên liên tiếp nên \((k+1)(k+2)\vdots 2\)

\(\Rightarrow 4(k+1)(k+2)\vdots 8\Leftrightarrow n^2+4n+3\vdots 8\) (đpcm)

b)

Phân tích \(n^3+3n^2-n-3=n^2(n+3)-(n+3)=(n^2-1)(n+3)\)

Đặt \(n=2k+1\Rightarrow (n^2-1)(n+3)=(n-1)(n+1)(n+3)=2k(2k+2)(2k+4)\)

\(=8k(k+1)(k+2)\)

\(k,k+1,k+2\) là ba số tự nhiên liên tiếp nên \(k(k+1)(k+2)\) chia hết cho $2$ và $3$

\(\Rightarrow k(k+1)(k+2)\vdots 6\)

\(\Rightarrow 8k(k+1)(k+2)\vdots 48\)

hay \(n^3+3n^2-n-3\vdots 48\) (đpcm)