K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2018

Áp dụng bất đẳng thức \(AM-GM\) cho 2 số dương ta có:

\(VT=\dfrac{a^3+b^3+c^3}{2abc}+\dfrac{a^2+b^2}{c^2+ab}+\dfrac{b^2+c^2}{a^2+bc}+\dfrac{a^2+c^2}{b^2+ac}\ge\dfrac{3abc}{2abc}+\dfrac{2ab}{c^2+ab}+\dfrac{2bc}{a^2+bc}+\dfrac{2ac}{b^2+ac}=\dfrac{3}{2}+2\left(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}\right)\)

Áp dụng bất đẳng thức \(Cauchy-Schwarz\) \(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}=\dfrac{a^2b^2}{c^2ab+a^2b^2}+\dfrac{b^2c^2}{a^2bc+b^2c^2}+\dfrac{a^2c^2}{b^2ac+a^2c^2}\ge\dfrac{\left(ab+bc+ac\right)^2}{c^2ab+a^2b^2+a^2bc+b^2c^2+b^2ac+a^2c^2}\)

Đặt: \(\left\{{}\begin{matrix}ab=x\\bc=y\\ac=z\end{matrix}\right.\) ta được: \(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+xy+xz+xy}\ge\dfrac{3\left(xy+yz+xz\right)}{2\left(xy+yz+xz\right)}=\dfrac{3}{2}\)

Nên: \(\dfrac{3}{2}+2\left(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}\right)\ge\dfrac{3}{2}+2.\dfrac{3}{2}=\dfrac{9}{2}\)

Mà: \(VT\ge\dfrac{3}{2}+2\left(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}\right)\Leftrightarrow VT\ge\dfrac{3}{2}\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
4 tháng 2 2018

Lời giải:

Áp dụng BĐT AM-GM ta có: \(\frac{a^3+b^3+c^3}{2abc}\geq \frac{3\sqrt[3]{a^3b^3c^3}}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\) (1)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{a^2+c^2}{b^2+ac}\geq \frac{(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2}{a^2+b^2+c^2+ab+bc+ac}\) (2)

Có:

\((\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2=2(a^2+b^2+c^2)+2\sqrt{(a^2+b^2)(b^2+c^2)}+2\sqrt{(b^2+c^2)(c^2+a^2)}+\sqrt{(a^2+b^2)(c^2+a^2)}\)

Áp dụng BĐT Bunhiacopxky:

\(\sqrt{(a^2+b^2)(b^2+c^2)}\geq \sqrt{(ac+b^2)^2}=ac+b^2\)

\(\sqrt{(b^2+c^2)(c^2+a^2)}\geq \sqrt{(ba+c^2)^2}=ba+c^2\)

\(\sqrt{(a^2+b^2)(c^2+a^2)}\geq \sqrt{(a^2+bc)^2}=a^2+bc\)

\(\Rightarrow (\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2\geq 2(a^2+b^2+c^2)+2(a^2+b^2+c^2+ab+bc+ac)\)

\(\geq a^2+b^2+c^2+ab+bc+ac+2(a^2+b^2+c^2+ab+bc+ac)\) (AM-GM)

Hay \((\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2\geq 3(a^2+b^2+c^2+ab+bc+ac)\) (3)

Từ \((2); (3)\Rightarrow \frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{a^2+c^2}{b^2+ac}\geq 3\) (4)

Từ \((1); (4)\Rightarrow \frac{a^3+b^3+c^3}{2abc}+\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{c^2+a^2}{b^2+ac}\geq \frac{9}{2}\)

Ta có đpcm.

Dấu bằng xảy ra khi $a=b=c$

AH
Akai Haruma
Giáo viên
19 tháng 6 2021

Lời giải:

Áp dụng BĐT AM-GM:

\(\text{VT}\leq \frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ac}}+\frac{1}{2c\sqrt{ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)

\(\leq \frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{a+c}{2}}{2abc}=\frac{a+b+c}{2abc}=\text{VP}\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$

 

NV
4 tháng 1 2021

1.

- Với \(a+b\ge4\Rightarrow A\le0\)

- Với \(a+b< 4\Rightarrow4-a-b>0\)

\(\Rightarrow A=\dfrac{a}{2}.\dfrac{a}{2}.b.\left(4-a-b\right)\)

\(\Rightarrow A\le\dfrac{1}{64}\left(\dfrac{a}{2}+\dfrac{a}{2}+b+4-a-b\right)^4=4\)

\(A_{max}=4\) khi \(\left(a;b\right)=\left(2;1\right)\)

2.

\(P=a+\dfrac{1}{2}.a.2b\left(1+2c\right)\le a+\dfrac{a}{8}\left(2b+1+2c\right)^2\)

\(P\le a+\dfrac{a}{8}\left(7-2a\right)^2=\dfrac{1}{8}\left(4a^3-28a^2+57a-36\right)+\dfrac{9}{2}\)

\(P\le\dfrac{1}{8}\left(a-4\right)\left(2a-3\right)^2+\dfrac{9}{2}\le\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};1;\dfrac{1}{2}\right)\)

 

NV
4 tháng 1 2021

Câu 3 bạn xem lại đề, mình có thể chắc chắn với bạn là đề sai

Ví dụ bạn cho \(x=98,y=100\) thì vế trái chỉ lớn hơn 8 một chút

Đề đúng phải là: \(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{16xy}{\left(x-y\right)^2}\ge12\)

 

NV
17 tháng 4 2021

\(P\ge\dfrac{3abc}{2abc}+\dfrac{a^2+b^2}{c^2+\dfrac{a^2+b^2}{2}}+\dfrac{b^2+c^2}{a^2+\dfrac{b^2+c^2}{2}}+\dfrac{c^2+a^2}{b^2+\dfrac{c^2+a^2}{2}}\)

\(P\ge\dfrac{3}{2}+2\left(\dfrac{a^2+b^2}{a^2+c^2+b^2+c^2}+\dfrac{b^2+c^2}{a^2+b^2+a^2+c^2}+\dfrac{a^2+c^2}{a^2+b^2+b^2+c^2}\right)\)

Đặt \(\left(a^2+b^2;b^2+c^2;a^2+c^2\right)=\left(x;y;z\right)\)

\(\Rightarrow P\ge\dfrac{3}{2}+2\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)=\dfrac{3}{2}+2\left(\dfrac{x^2}{xy+xz}+\dfrac{y^2}{yz+xy}+\dfrac{z^2}{xz+yz}\right)\)

\(P\ge\dfrac{3}{2}+\dfrac{2\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\dfrac{3}{2}+\dfrac{3\left(xy+yz+zx\right)}{xy+yz+zx}=3+\dfrac{3}{2}=\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

AH
Akai Haruma
Giáo viên
19 tháng 6 2021

Lời giải tại link sau:

https://hoc24.vn/cau-hoi/cho-abc-la-cac-so-duongcmr-dfrac1a2bcdfrac1b2acdfrac1c2abledfracabc2abc.193908584039

28 tháng 7 2018

Đề đúng đây nhé

\(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)

Áp dụng BĐT Cosi ta có:

\(a^2+bc\ge2a\sqrt{bc}\)

\(\Rightarrow\dfrac{1}{a^2+bc}\le\dfrac{1}{2a\sqrt{bc}}\)

Cmtt: \(\dfrac{1}{b^2+ac}\le\dfrac{1}{2b\sqrt{ac}}\)

\(\dfrac{1}{c^2+ab}\le\dfrac{1}{2c\sqrt{ab}}\)

Cộng vế theo vế ta được

\(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{1}{2a\sqrt{bc}}+\dfrac{1}{2b\sqrt{ac}}+\dfrac{1}{2c\sqrt{ab}}\)

\(\Leftrightarrow\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\)

\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le a+b+c\) (C/m sau)

Nên \(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)

Chứng minh \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le a+b+c\)

\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le a+b+c\)

\(\text{​​}\Leftrightarrow\text{​​}\text{​​}2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\le2a+2b+2c\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\left(lđ\right)\)

28 tháng 7 2018

hình như sai đề bạn nhé. Đề vậy mk bó tay