Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\frac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}=\sqrt{\frac{\left(a^2+ab+ac+bc\right)\left(b^2+bc+ba+ac\right)}{c^2+ca+cb+ab}}=\sqrt{\frac{\left(a+b\right)\left(a+c\right)\left(b+a\right)\left(b+c\right)}{\left(c+a\right)\left(c+b\right)}}=a+b\left(a,b,c>0;a+b+c=1\right)\)
Bạn làm tương tự nha
\(\Rightarrow P=a+b+c+a+b+c=2\left(a+b+c\right)=2\)
\(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
\(\Leftrightarrow\left(\sqrt{c\left(a-c\right)}\right)^2+\left(\sqrt{c\left(b-c\right)}\right)\le\left(\sqrt{ab}\right)^2\)
\(\Leftrightarrow c\left(a-c\right)+c\left(b-c\right)\le ab\)
Thấy: \(c\left(a-c+b-c\right)\)
\(\Leftrightarrow ac-\left(c^2-cb+c^2\right)\)
\(c< b\Rightarrow ac< ab\)
Do đó: \(ac-\left(c^2-cb+c^2\right)< ab\)
Vậy: \(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
ta cần cm \(\left(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right)^2\le ab\)
mà theo bunhia \(\left(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right)^2\le\left(c+b-c\right)\left(c+a-c\right)=ab\)
Áp dụng bđt Bunhiacopxki :
\(\sqrt{c}\cdot\sqrt{a-c}+\sqrt{c}\cdot\sqrt{b-c}\le\sqrt{\left[\left(\sqrt{c}\right)^2+\left(\sqrt{a-c}\right)^2\right]\left[\left(\sqrt{c}\right)^2+\left(\sqrt{b-c}\right)^2\right]}\)
\(=\sqrt{\left(c+a-c\right)\left(c+b-c\right)}=\sqrt{ab}\) ( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow\frac{c}{a-c}=\frac{c}{b-c}\Leftrightarrow a-c=b-c\Leftrightarrow a=b\)
Sửa đề \(a;b>c>0\)
Giả sử \(\sqrt{ab}\ge\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\)
\(\Leftrightarrow ab\ge c\left(a-c\right)+c\left(b-c\right)+2c\sqrt{\left(a-c\right)\left(b-c\right)}\)
\(\Leftrightarrow ab-ac+c^2-bc+c^2-2c\sqrt{\left(a-c\right)\left(b-c\right)}\ge0\)
\(\Leftrightarrow\left(a-c\right)\left(b-c\right)-2c\sqrt{\left(a-c\right)\left(b-c\right)}+c^2\ge0\)
\(\Leftrightarrow\left(\sqrt{\left(a-c\right)\left(b-c\right)}\right)^2-2c\sqrt{\left(a-c\right)\left(b-c\right)}+c^2\ge0\)
\(\Leftrightarrow\left(\sqrt{\left(a-c\right)\left(b-c\right)}-c\right)^2\ge0\)đúng với \(\forall a;b>c>0\)
lú rùi vậy cũng sai :(
\(BDT\Leftrightarrow\sqrt{\dfrac{c}{b}.\dfrac{a-c}{a}}+\sqrt{\dfrac{c}{a}.\dfrac{b-c}{b}}\le1\)
Áp dụng BĐT AM-GM ta có:
\(VT\le\dfrac{\dfrac{c}{b}+\dfrac{a-c}{a}}{2}+\dfrac{\dfrac{c}{a}+\dfrac{b-c}{b}}{2}=1\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{\left(a+c\right)\left(b+c\right)}+\sqrt{\left(a-c\right)\left(b-c\right)}\right)^2\)
\(\le\left(a+c+a-c\right)\left(b+c+b-c\right)\)
\(=2a\cdot2b=4ab=VP^2\)
\(\Rightarrow VT\le VP\) *ĐPCM*