K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

Trả lời: mk k bít

29 tháng 5 2019

Ukm k sao đâu, mk cũng từ nghĩ ra cách làm rồi

9 tháng 12 2016

Gọi d là uoc chung cua (5a + 2b ; 7a +3b)

\(\begin{cases}5a+2b⋮d\\7a+3b⋮d\end{cases}\)

=>5 . (7a + 3b) - 7 (5a + 2b)\(⋮\)d

=>35a + 15b - 35a -14b \(⋮\)d

=> 15b - 14b \(⋮d\)

=> b (1b) \(⋮d\)

\(\begin{cases}5a+2b⋮d\\7a+3b⋮d\end{cases}\)

=>3(5a + 2b) - 2(7a + 3b)\(⋮d\)

=>15a +6b - 14a - 6b \(⋮d\)

=> a (1a) \(⋮d\)

mà ( a , b) =1

=> d=1

vậy 5a + 2b và 7a +3b nguyên tố cùng nhau

 

 

 

 
9 tháng 12 2016

Xem lại đề có bị sai chỗ nào ko

28 tháng 6 2020

\(\text{Gọi:}d=UCLN\left(5a+2b,7a+3b\right)\Rightarrow\hept{\begin{cases}15a+6b⋮d\\14a+6b⋮d\end{cases}}\Rightarrow a⋮d;2a+b⋮d\Rightarrow b⋮d\)

do đó: \(UCLN\left(a,b\right)\ge UCLN\left(5a+2b,7a+3b\right);\text{mặt khác:}Goi:d'=UCLN\left(a,b\right)\Rightarrow\hept{\begin{cases}5a+2b⋮d'\\7a+3b⋮d'\end{cases}}\)

do đó:\(UCLN\left(5a+2b,7a+3b\right)\ge UCLN\left(a,b\right)\text{ suy ra điều phải chứng minh}\)

28 tháng 6 2020

MIK vẫn chư hiểu đoạnƯCLN(a,b)>ƯCLN (5A+2B,7A+3B)

19 tháng 1 2015

*Nếu d thuộc ƯC(a,b)suy ra a chia hết cho d;b chia hết cho d .Suy ra 5a+2b,7a+3b chia hết cho d

*Nếu k thuộc ƯC (5a+2b;7a+3b)suy ra 5(7a+3b)-7(5a+2b)=35a+15b-35a-14b.b chia hết cho d

                                               suy ra 3(5a+2b)-2(7a+3b)=15a+6b-14a-6b=a chia hết cho d  

17 tháng 1 2017

quang cơ điện là điên cơ quạng

22 tháng 12 2015

ai **** cho mk hết âm cái

 

1 tháng 3 2021

Gọi \(ƯCLN\left(5a+2b;7a+3b\right)=d\) \(\left(d\in N\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}5a+2b⋮d\\7a+3b⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}15a+6b⋮d\\14a+6b⋮d\end{matrix}\right.\)

\(\Leftrightarrow a⋮d\)

Mà \(5a+2b⋮d\) \(\Leftrightarrow b⋮d\)

\(\Leftrightarrow d⋮a,b\Leftrightarrow d⋮d'\left(1\right)\)

Gọi \(d'=ƯCLN\left(a,b\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}a⋮d'\\b⋮d'\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5a+2b⋮d'\\7a+3b⋮d'\end{matrix}\right.\)

\(\Leftrightarrow d'⋮d\) \(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)