Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A)\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)=\(\dfrac{a}{a-b}=\dfrac{c}{c-d}\) (đpcm)
bz-cy/a = cx- az /b = ay-bx /c => bxz-cxy / ax = cxy-azy / b = azy-bxz/c = bxz-cxy + cxy-azy+azy-bxz / a+b+c = 0/ a+b+c = 0
Suy ra : bz -cy/a = 0 => bz-cy=0 => bz = cy => z/c = b/y
cx-az/b = 0 => cx-az=0 => cx=az => x/a = z/c
ay-bx/c = 0 => ay-bx = 0 => ay=bx=> y/b = x/a
Vậy x/a=y/b=c/z
Lời giải:
Ta có:
\(M=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{b+c+d}+\frac{d}{a+d+c}\)
\(> \frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)
\(\Leftrightarrow M>\frac{a+b+c+d}{a+b+c+d}=1(1)\)
Mặt khác:
\(M=1-\frac{b+c}{a+b+c}+1-\frac{a+d}{a+b+d}+1-\frac{b+d}{b+c+d}+1-\frac{a+c}{a+d+c}\)
\(\Leftrightarrow M=4-\underbrace{\left(\frac{b+c}{a+b+c}+\frac{a+d}{a+b+d}+\frac{b+d}{b+c+d}+\frac{a+c}{a+d+c}\right)}_{N}\)
Có: \(N>\frac{b+c}{a+b+c+d}+\frac{a+d}{a+b+c+d}+\frac{b+d}{a+b+c+d}+\frac{a+c}{a+b+c+d}\)
\(\Leftrightarrow N>\frac{2(a+b+c+d)}{a+b+c+d}=2\)
\(\Rightarrow M=4-N< 4-2\Leftrightarrow M< 2(2)\)
Từ \((1);(2)\Rightarrow 1< M< 2\Rightarrow M\not\in \mathbb{N}\)
Cách 1:
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{b}{a}=\dfrac{d}{c}\)
\(\Rightarrow1-\dfrac{b}{a}=1-\dfrac{d}{c}\)
\(\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
Cách 2 :
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow ad=bc\)
\(\Rightarrow ac-ad=ac-bc\)
\(\Rightarrow\left(a-b\right)c=a\left(c-d\right)\)
\(\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
Cách 3:
Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)
\(\Rightarrow\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
\(\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
TH1 : a+b+c+d=0
\(\Rightarrow\left\{{}\begin{matrix}a+b=-\left(c+d\right)\\a+d=-\left(b+c\right)\\b+c=-\left(a+d\right)\\c+d=-\left(a+b\right)\end{matrix}\right.\Rightarrow N=\dfrac{-\left(c+d\right)}{c+d}+\dfrac{-\left(a+d\right)}{a+d}+\dfrac{-\left(a+b\right)}{a+b}+\dfrac{-\left(b+c\right)}{b+c}=-4\)
TH2 : a+b+c+d khác 0
Ta có :
\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\\ \Rightarrow\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)
Trừ mỗi tỉ số cho một
=> a=b=c=d
=> M = 4
Cảm ơn bạn nhưng mình cần tóm tắt cách làm như sau:
TA CÓ :
Mỗi tỉ số ta đều bớt đi 1ta được
\(\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)
Như vậy ta chia ra 2 trường hợp
\(\left[{}\begin{matrix}a+b+c+d\ne0\\a+b+c+d=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}M=1+1+1+1\\M=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}M=4\\M=-4\end{matrix}\right.\)
Chúc bạn học tốt !
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow\dfrac{a^n}{c^n}=\dfrac{b^n}{d^n}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a^n}{c^n}=\dfrac{b^n}{d^n}=\dfrac{a^n+b^n}{c^n+d^n}=\dfrac{a^n-b^n}{c^n-d^n}\Rightarrowđpcm\)