K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

T
10 tháng 11 2015

Theo nguyên tắc Di-rich-lê ta có: Trong 42 số tự nhiên bất kì có it nhất 2 số khi chia cho 41 có cùng số dư.                              

=> Hiệu cuả 2 số đó chia hết cho 41

=> ĐPCM

 

24 tháng 12 2023

SOS CẦN GẤP

 

24 tháng 12 2023

CMR là j hả bn

11 tháng 2 2020

Giả sử trong 2n số nguyên dương đầu tiên có đúng m số nguyên tố là p1;p2,...;pm.Dễ chứng minh được rằng m⩽n

Chia 2n số nguyên dương đó thành m+1 tập con (có thể giao nhau) :A0;A1;A2;...;Am, trong đó :

A0={1}

Ai (1⩽i⩽m) gồm pi và tất cả các bội của nó trong 2n số nguyên dương đầu tiên.

Xét 2 trường hợp:

+) m < n 

   Khi đó m + 1 < n + 1⇒ trong n+1 số bất kỳ (chọn trong 2n số đó) chắc chắn có 2 số thuộc cùng 1 tập con và là bội của nhau, đó là 2 số cần tìm.

+)  m = n

   + Nếu trong n+1 số đó có số 1 (thuộc tập Ao) thì đpcm là hiển nhiên.

   + Nếu trong n+1 số đó không có số nào thuộc tập A0 thì chúng chỉ nằm trong m tập con còn lại.

      Vì m<n+1 nên có ít nhất 2 số (trong n+1 số đó) thuộc cùng 1 tập con và là bội của nhau, đó là 2 số cần tìm.

Như vậy, trong mọi trường hợp, luôn tìm được 2 số là bội của nhau từ n+1 số bất kỳ chọn trong 2n số nguyên dương đầu tiên.

11 tháng 2 2020

Nguồn: https://diendantoanhoc.net/topic/132810-ch%E1%BB%A9ng-minh-r%E1%BA%B1ng-t%E1%BB%AB-n1-s%E1%BB%91-b%E1%BA%A5t-k%C3%AC-trong-2n-s%E1%BB%91-t%E1%BB%B1-nhi%C3%AAn-%C4%91%E1%BA%A7u-ti%C3%AAn-lu%C3%B4n-t%C3%ACm-%C4%91%C6%B0%E1%BB%A3c-hai-s%E1%BB%91-l%C3%A0-b%E1%BB%99i-c/

Mình cx bí bày này nên giải lại cho hiểu kĩ

30 tháng 1 2016

Trong N có các Ư(50) là : {1;2;5;10;25;50}

Các số tự nhiên khác 0 khi chia cho 50 có 50 khả năng dư.

Nếu trong 27 số tự nhiên đó có 2 số cùng dư khi chia cho 50,vậy hiệu 2 số này chia hết cho 50(Bài toán được chứng minh)

Nếu trong 27 số tự nhiên không có 2 số nào có cùng số dư khi chia cho 50 =>ta có ít nhất  48 năng dư khi chia cho 50(loại ít nhất 2 số 0 và 25)

Ta chia 48 khả năng dư thành 24 nhóm : (1;49);(2;48);....;(24;26)

Vì có 27 số mà có 24 nhóm  => Theo nguyên lí dirichlet sẽ có ít nhất 2 số có cùng một nhóm và đúng bằng 50 chia hết cho 50(bài toán được chứng minh)

Vậy trong  27 stn tuỳ ý luôn tồn tại 2 số sao cho tổng hoặc hiệu của chúng chia hết cho 50

 
12 tháng 3 2021

lấy 2010 số được tạo ởi toàn chữ số 2

2; 22; 222; ......; 222...22 (2010 chữ số 2)

lần lượt chia các số trên cho 2010 thì ta sẽ được nhiều nhất 2010 phép chia có dư và các số dư nằm trong khoảng từ 1 đến 2009

Theo nguyên lý dirichlet sẽ có ít nhất hai số khi chia cho 2010 sẽ có cùng số dư

Giả sử hai số đó là A có m chữ số 2 và B có n chữ số 2 (giả sử m>n)

=> A-B=C chia hết cho 2010 trong đó C gồm m-n chữ số 2 và n chữ số 0 (dpcm)