Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)
Giải sử S là số chính phương
=> 3(a + b + c ) \(⋮\) 37
Vì 0 < (a + b + c ) \(\le27\)
=> Điều trên là vô lý
Vậy S không là số chính phương
2/ Gọi số đó là abc
Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)
\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)
Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)
ab ‐ ba = 10a + b ‐ ﴾10b +a﴿ = 9a ‐ 9 b = 9﴾a ‐ b﴿= 3 2 ﴾a ‐ b﴿
Để ab ‐ ba là số chính phương thì a ‐ b là số chính phương mà a; b là các chữ số
nên a ‐ b chỉ có thể = 1; 4; 9
+﴿ a ‐ b = 1 ; ab nguyên tố => ab = 43
+﴿ a ‐ b = 4 => ab= 73 thỏa mãn
+﴿ a‐ b = 9 => ab = 90 loại
Vậy ab = 43 hoặc 73
ab-ba=10xa+b-10xb-a=9xa-9xb=9x(a-b)(0<a,b<10)
Do ab-ba là số chính phương =>9x(a-b) là số chính phương Do 9 là số chính phương =>a-b=9 hoặc a-b là số chính phương
*)Nếu a-b=1=>v...v...
*)Nếu a-b=4=>v...v...
*)Nếu a-b=9=>a=9 b=0(L)
ab - ba = 10a + b - ( 10b + a ) = 9a - 9b = 9 ( a - b ) = \(3^2\)( a - b )
Để ab - ba là số chính phương thì a - b là số chính phương mà a ; b là các chữ số
Nên a - b chỉ có thể là 1 ; 4 ; 9
+) a - b = 1 ; ab là số nguyên tố \(\Rightarrow\)ab = 43
+) a - b = 4 \(\Rightarrow\)ab = 73 ( thỏa mãn )
+) a - b = 9 \(\Rightarrow\)ab = 90 ( loại )
Vậy ab = 43 hoặc 73
S=abc+bca+cab
= (1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)
= 1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)
Vậy không tồn tại số chính phương S
mình chỉ làm được bài 1 thôi .
1/ ta có : abc + bca + cab = 111a + 111b + 111c
= 111 . (a+b+c)
= 3. 37 . (a+b+c)
Để S là số chính phương thì a+b+c = 3. 37 . k^2.
Mà a+ b+ c < hoặc = 27 nên :
=> Tổng S ko là số chính phương .
\(S=abc+bca+cab+ab+bc+ca\)
\(=100a+10b+c+100b+10c+a+100c+10a+b+10a+b+10b+c+10c+a\)
\(=122a+122b+122c\)
\(=122\left(a+b+c\right)\)
\(=61.2\left(a+b+c\right)\)
Vì 61 và 2 là các số nguyên tố nên để S là số chính phương thì trước hết a + b + c chia hết cho 61 và 2.
a + b + c > 0 ; mà a+b+c < 28; nên nó không thể chia hết cho 61.
Do đó S không thể là số chính phương.
vào đây nhé: Câu hỏi của phandangnhatminh - Toán lớp 7 - Học toán với OnlineMath
t i c k nhé!! 46457645774745756858768967969689088558768578769
1)
A= abc + bca + cab = 111a + 111b + 111c = 3 . 37 . ( a +b + c )
số chính phương phải chứa thừa số nguyên tố với số mũ chẵn, do đó a + b + c phải bằng 37k2 ( k \(\in\)N ) . điều này vô lý vì 3 \(\le\)a + b + c \(\le\)37
Vậy A không là số chính phương
2 bài tách riêng nha
1.CMR...
2. tìm số .....