Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Khai bút đầu năm lấy may :''>
Đặt $x^2+ax+1=t$ thì ta có hệ \(\left\{\begin{matrix} x^2+ax+(1-t)=0(1)\\ t^2+at+1=0(2)\end{matrix}\right.\)
Trước tiên, pt $(2)$ cần có nghiệm.
Điều này xảy ra khi $\Delta_{(2)}=a^2-4\geq 0\Leftrightarrow a\geq 2$ hoặc $a\leq -2$
Để PT ban đầu có nghiệm duy nhất thì PT $(1)$ phải có nghiệm duy nhất. Điều này xảy ra khi $\Delta_{(1)}=a^2-4(1-t)=0$
$\Leftrightarrow 4(1-t)=a^2$. Mà $a^2\geq 4$ nên $1-t\geq 1\Rightarrow t\leq 0$
------------------
Giờ ta xét:
Nếu $a\leq -2$. Kết hợp với $t\leq 0\Rightarrow at\geq -2t$
$\Rightarrow 0=t^2+at+2\geq t^2-2t+1\Leftrightarrow 0\geq (t-1)^2$.
$\Rightarrow t-1=0\Rightarrow t=1$ (vô lý vì $t\leq 0$)
Do đó $a\geq 2$
Tuy nhiên thay $a=2$ vào hệ ta thấy không thỏa mãn. Do đó $a>2$ (đpcm)
Bài 2:
Nếu $a=0\Rightarrow 2b+5c=0\Rightarow c=\frac{-2}{5}b$
PT trở thành: $bx+c=0$
$\Leftrightarrow bx-\frac{2}{5}b=0$ có nghiệm duy nhất $x=\frac{2}{5}$ nếu $b\neq 0$ hoặc vô số nghiệm nếu $b=0$
Tức là với $a=0$ pt luôn có nghiệm.
Nếu $a\neq 0$. PT đã cho là pt bậc hai ẩn $x$
Xét $\Delta=b^2-4ac=b^2-4(-2b-5c)c=b^2+8bc+20c^2=(b+4c)^2+4c^2\geq 0$ với mọi $b,c$ nên PT đã cho luôn có nghiệm.
Vậy........
Đặt \(\left\{{}\begin{matrix}a=x\\\frac{1}{b}=y\end{matrix}\right.\) \(\Rightarrow x+y=1\)
\(VT=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2\)
\(VT\ge\frac{1}{2}\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+y+\frac{4}{x+y}\right)^2=\frac{1}{2}\left(1+4\right)^2=\frac{25}{2}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\) hay \(\left\{{}\begin{matrix}a=\frac{1}{2}\\b=2\end{matrix}\right.\)
Giả sử trong 100 số đó không có 2 số nào bằng nhau.
\(\Rightarrow\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}+...+\dfrac{1}{\sqrt{x_{100}}}\le\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{100}}\)
\(< 1+\dfrac{2}{\sqrt{2}+\sqrt{1}}+\dfrac{2}{\sqrt{3}+\sqrt{2}}+...+\dfrac{2}{\sqrt{100}+\sqrt{99}}\)
\(=1+2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)
\(=1+2\left(\sqrt{100}-\sqrt{1}\right)=19< 20\)
Vậy trong 100 số đã cho có ít nhất 2 số bằng nhau
Giả sử 100 số nguyên dương đã cho ko tồn tại \(x_i=x_k\)
Ko mất tính tổng quát giả sử \(x_1< x_2< x_3< ...< x_{100}\)
Vì \(x_1;x_2;x_3;...;x_{100}\) đều là các số nguyên dương suy ra \(x_1\ge1;x_2\ge2;....;x_{100}\ge100\)
Tức là có: \(VT< \dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{100}}< 10< VP\)
Mâu thuẫn với giả thiết suy ra điều giả sử sai
Tức tồn tại \(x_i=x_k\) với \(i\ne k\) và \(i,k\in\left\{1;2;...;100\right\}\)
\(a^{n+1}-\left(a=1\right)^n=2001\left(n\in N\right)\)
\(\Rightarrow a^{n-1}-1^n=2001\)
\(\Rightarrow a^{n-1}-1=2001\)
\(\Rightarrow a^{n-1}=2001+1\)
\(\Rightarrow a^{n-1}=2002\)
Mk chỉ biết giải TH:n dương và chỉ giải đc thế thôi
Chúc bn học tốt