\(x=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)...\left(2n-1\right)\cdot2n}{2^n}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 3 2019

Ko có điều kiện n tự nhiên (hoặc nguyên) thì bạn nhờ ai cũng thế thôi, đầu hàng hết vì ko tự nhiên thì nó làm gì có quy luật để mà giải

NV
13 tháng 3 2019

Chỉ chứng minh được với điều kiện \(n\in N\)* (với \(n\) nguyên âm thì hiển nhiên quy luật trên tử số có vấn đề về mặt sắp xếp, \(n+1< n+2\) nhưng \(n+1>2n\) , còn với n không nguyên thì nó chẳng có quy luật nào cho tử số cả, \(n=0\) thì hmmm, tử số ko có quy luật nhưng chắc chắn =0)

Ta sử dụng quy nạp:

- Với \(n=1\Rightarrow x=\frac{2}{2^1}=1\) nguyên (đúng)

- Với \(n=2\Rightarrow x=\frac{3.4}{2^2}=3\) nguyên (đúng)

- Giả sử \(x\) là số nguyên với \(n=k\) tức là:

\(\frac{\left(k+1\right)\left(k+2\right)...\left(2k-1\right)2k}{2^k}\) nguyên

- Ta cần chứng minh \(x\) cũng nguyên với \(n=k+1\)

Thật vậy, khi đó:

\(x=\frac{\left(k+2\right)\left(k+3\right)...\left(2k+1\right)\left(2k+2\right)}{2^{k+1}}=\frac{\left(k+1\right)\left(k+2\right)...2k}{2^k}.\frac{\left(2k+1\right)\left(2k+2\right)}{2.\left(k+1\right)}\)

\(=\frac{\left(k+1\right)\left(k+2\right)...2k}{2^k}.\left(2k+1\right)\)

Do \(\frac{\left(k+1\right)\left(k+2\right)...2k}{2^k}\) nguyên và \(2k+1\) nguyên

\(\Rightarrow x=\frac{\left(k+1\right)\left(k+2\right)...2k}{2^k}\left(2k+1\right)\) nguyên (đpcm)

11 tháng 10 2017

khó thế

21 tháng 5 2018

Ta chứng minh \(2^2+4^2+...+\left(2n\right)^2=\frac{2n\left(n+1\right)\left(2n+1\right)}{3}\)  (1)  

với mọi n \(\in\)N* , bằng phương pháp quy nạp 

Với n = 1, ta có \(2^2=4=\frac{2.1\left(1+1\right)\left(2.1+1\right)}{3}\)

=> (1) đúng khi n = 1 

Giả sử đã có (1) đúng khi n = k , k\(\in\)N* , tức là giả sử đã có : 

\(2^2+4^2+...+\left(2k\right)^2=\frac{2k\left(k+1\right)\left(2k+1\right)}{3}\)

Ta chứng minh (1) đúng khi n = k + 1 , tức là ta sẽ chứng minh 

\(2^2+4^2+...+\left(2k\right)^2+\left(2k+2\right)^2=\frac{2k\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{3}\)

=> Từ giả thiết quy nạp ta có : 

\(2^2+4^2+...+\left(2k\right)^2+\left(2k+2\right)^2=\frac{2k\left(k+1\right)\left(2k+1\right)}{3}+\left(2k+2\right)^2\)

                                                                    \(=\frac{2\left(k+1\right)\left(2k^2+k+6k+6\right)}{3}\)

                                                                    \(=\frac{2\left(k+1\right)\left[2k\left(k+2\right)+3\left(k+2\right)\right]}{3}\)

                                                                    \(=\frac{2\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{3}\)

Từ các chứng minh trên , suy ra (1) đúng với mọi n \(\in\)N*                                             

21 tháng 5 2018

ai quan tam lam chi

17 tháng 6 2016

Ta có: \(n+\left(n+1\right)>2\sqrt{n\left(n+1\right)}\left(AM-GM\right)\) suy ra:

\(\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{1}{\left(2n+1\right).\frac{\left(n+1\right)-n}{\sqrt{n+1}-\sqrt{n}}}=\frac{\sqrt{n+1}-\sqrt{n}}{n+\left(n+1\right)}< \frac{1}{2}.\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)Áp dụng vào ta có:

\(S_n< \frac{1}{2}\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=\frac{1}{2}-\frac{1}{2\sqrt{n+1}}< \frac{1}{2}\left(đpcm\right).\)

17 tháng 6 2016

Đây bạn:

/hoi-dap/question/55444.html

17 tháng 6 2016

/hoi-dap/question/55444.html

17 tháng 6 2016

Bạn bấn vào đây, câu hỏi của bạn có người trả lời rồi Câu hỏi của Lương Ngọc Anh - Toán lớp 9 | Học trực tuyến

17 tháng 8 2015

Vừa post xong

Lời giải như sau: Kí hiệu \(n!=1\cdot2\cdots n\)  là tích \(n\)  số nguyên dương đầu tiên. Khi đó ta sẽ có

Tử số bằng  \(\left(2\cdot1\right)\left(2\cdot3\right)\left(2\cdot5\right)\cdots\left(2\cdot\left(2n-1\right)\right)=2^n\cdot1\cdot3\cdot5\cdots\left(2n-1\right).\)

Mẫu số bằng \(\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)\left(n+5\right)\cdots\left(2n\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)}=\frac{\left(2n\right)!}{n!}\cdot\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)}\).

Suy ra \(a_n=\frac{2^n\cdot1\cdot3\cdot5\cdots\left(2n-1\right)}{\left(2n\right)!}\cdot n!\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\)

\(=\frac{2^n\cdot n!}{\left(2\cdot1\right)\left(2\cdot2\right)\cdots\left(2\cdot n\right)}\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\).

Cuối cùng ta có  \(a_n=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\)

\(=\left(n^2+5n+4\right)\left(n^2+5n+6\right)+1=y\left(y+2\right)+1=\left(y+1\right)^2\)

ở đó \(y=n^2+5n+4\) là số nguyên. Vậy \(a_n\) là số chính phương.