K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2018

\(\text{Ta có :}\)

\(x^{8n}+x^{4n}+1=x^{8n}+2x^{4n}+1-x^{4n}\)

\(=\left(x^{4n}+1\right)^2-\left(x^{2n}\right)^2\)

\(=\left(x^{4n}-x^{2n}+1\right)\left(x^{4n}+x^{2n}+1\right)\)

\(\text{Ta lại có :}\)

\(x^{4n}+x^{2n}+1=x^{4n}+2x^{2n}+1-x^{2n}\)

\(=\left(x^{2n}+1\right)^2-\left(x^n\right)^2=\left(x^{2n}-x^n+1\right)\left(x^{2n}+x^n+1\right)\)

\(\Rightarrow x^{8n}+x^{4n}+1=\left(x^{4n}-x^{2n}+1\right)\left(x^{2n}-x^n+1\right)\left(x^{2n}+x^n+1\right)\)

\(\Rightarrow x^{8n}+x^{4n}+1⋮x^{2n}+x^n+1\)

9 tháng 6 2016

\(x^{8n}+x^{4n}+1=\left(x^{4n}\right)^2+2x^{4n}+1-\left(x^{2n}\right)^2\)

=\(\left(x^{4n}+1\right)^2-\left(x^{2n}\right)^2=\left(x^{4n}-x^{2n}+1\right)\left(x^{4n}+x^{2n}+1\right)\)

phân tích như vậy tương tự với \(x^{4n}+x^{2n}+1=\left(x^{2n}+x^n+1\right)\left(x^{2n}-x^n+1\right)\)

Cái đó chia hết cho x2n+xn+1 => x8n+x4n+1 chia hết cho .................

3 tháng 1 2018

mhink thấy tên gì kệ nó làm ............

23 tháng 11 2016

Ta có: x50 + x49 + ... + 1 có 51 số hạng. 

x16 + x15 + ... + 1 có 17 số hạn nên ta chia nhóm trên thành 3 nhóm mỗi nhóm 17 số hạn như sau.

x50 + x49 + ... + 1 = (x50 + x49 +...+x34) + (x33 + x32 +...+x17) + (x16 + x15 +...+1)

= x34(x16 + x15​ +...+1) + x17(x16 + x15​ +...+1) + (x16 + x15​ +...+1)

= (x16 + x15​ +...+1)(x34 + x17 + 1)

Tích này chia hết cho (x16 + x15​ +...+1)

Nên x50 + x49 + ... + 1 chia hết cho (x16 + x15​ +...+1)

23 tháng 11 2016

Bai nay de nhung mk ko biet nha

Nho k cho minh nha

chuc cac ban hac gioi

26 tháng 9 2018

e ko bt

3 tháng 4 2017

P(x) chia hết cho x + 1 ⇔ P(-1) = -m + (m - 2) + (3n - 5) - 4n = 0.

P(x) chia hết cho x - 3 ⇔ P(3) = 27m + 9(m - 2) - 3(3n - 5) - 4n = 0

Từ (1) và (2), ta có hệ phương trình ẩn m và n.