Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-x^ - x - 1 = - (x^2+x+1) = - (x^2+x+1/4+3/4) = - [(x+1/2)^2 +3/4) ]
Ta có [(X+1/2)^2+3/4 lớn hơn hoặc bằng 3/4 => - [(x+1/2)^2+3/4] nhỏ hơn hoặc bằng -3/4 <0
\(-\left(x^2+x+1\right)\Rightarrow-\left[x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+1-\left(\frac{1}{2}\right)^2\right]\)
\(\Rightarrow-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\Rightarrow-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\Rightarrow\le0\)
\(-x^2+x-\dfrac{1}{2}\)
\(=-\left(x^2-x+\dfrac{1}{2}\right)\)
\(=-\left(x^2-x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}< 0\)
a)\(x^2-2xy+y^2+1=\left(x+y\right)^2+1\ge1>0\)
b)\(x-x^2-1=-\left(x^2-x+\frac{1}{4}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)
c)\(9x^2+12x+10=\left(9x^2+12x+4\right)+6=\left(3x+2\right)^2+6\ge6>0\)
d)\(3x^2-x+1=2x^2+\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=2x^2+\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0`\)
\(-x^2+x-\dfrac{1}{2}\)
\(=-\left(x^2-x+\dfrac{1}{2}\right)\)
\(=-\left(x^2-x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}< 0\)
\(x^2-x+1=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
\(-x^2+4x-5=-\left(x^2-2.x.2+2^2\right)-1=-\left(x-2\right)^2-1< 0\forall x\)
\(a\left(2a-3\right)-2a\left(a+1\right)=a\left(2a-3-2a-2\right)=-5a⋮5\forall a\inℤ\)
a) Ta có:
\(x^2+4x+5\)
\(=x^2+2.x.2+4+1\)
\(=\left(x+2\right)^2+1\)
Vì \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+1>0\forall x\)
\(\Rightarrow x^2+4x+5>0\forall x\)
b) Ta có:
\(x^2-x+1\)
\(=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow x^2-x+1>0\forall x\)
c) Ta có:
\(12x-4x^2-10\)
\(=-\left(4x^2-12x+10\right)\)
\(=-\left[\left(2x\right)^2-2.2x.3+9+1\right]\)
\(=-\left(2x-3\right)^2-1\)
Vì \(-\left(2x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(2x-3\right)^2-1< 0\forall x\)
\(\Rightarrow12x-4x^2-10< -1\)
Lời giải:
a)
Áp dụng bất đẳng thức AM-GM:
\(x^3+x^2+x+1\geq 4\sqrt[4]{x^3.x^2.x.1}=4\sqrt[4]{x^6}\)
\(\Rightarrow (x^3+x^2+x+1)^2\geq 16\sqrt{x^6}\)
\(\Leftrightarrow (x^3+x^2+x+1)^2\geq 16x^3\) (đpcm)
Dấu bằng xảy ra khi \(x=1\)
b)
Áp dụng BĐT AM-GM:
\(\frac{b+c}{a}.1\leq \left(\frac{\frac{b+c}{a}+1}{2}\right)^2=\frac{1}{4}\left(\frac{b+c+a}{a}\right)^2\)
\(\Rightarrow \frac{a}{b+c}\geq 4\left(\frac{a}{a+b+c}\right)^2\Leftrightarrow \sqrt{\frac{a}{b+c}}\geq \frac{2a}{a+b+c}\)
Thực hiện tương tự với cac phân thức còn lại và cộng theo vế thu được:
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\geq \frac{2a+2b+2c}{a+b+c}=2\)
Dấu bằng xảy ra khi
\(\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=1\Rightarrow a+b+c=2a=2b=2c\)
\(\Rightarrow a=b=c\Rightarrow \frac{b+c}{a}=2\neq 1\) (vô lý)
Do đó dấu bằng không xảy ra
Vì vậy: \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}>2\)
Sửu đề bạn nhé!
Ta có:\(-4+5x-x^2=-\left(x^2-5x+4\right)\)
\(=-\left[x^2-2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\dfrac{25}{4}+4\right]\)
\(=-\left[\left(x-\dfrac{5}{2}\right)^2-\dfrac{9}{4}\right]\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{9}{4}\)
do \(-\left(x-\dfrac{5}{2}\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}< 0\) với mọi x
\(\Rightarrow\) điều phải chứng minh
\(x-x^2-1\)
\(=-\left(x^2-x+1\right)\)
\(=-\left[\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{1}{4}-1\right]\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\)
Ta có :
\(-\left(x-\dfrac{1}{2}\right)^2\le0\Rightarrow-\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}< 0\forall x\)
hay \(x-x^2-1< 0\forall x\)