Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
A chia hết cho 120
Có: \(n^5-5n^3+4n\)
\(=n\left(n^4-5n^2+4\right)\)
\(=n\left(n^4-n^2-4n^2+4\right)\)
\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-1\right)\right]\)
\(=n\left(n^2-1\right)\left(n^2-4\right)\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Đây là 4 số tự nhiên liên tiếp nên chia hết cho 120
Ta có :
\(A=n^5-5n^3+4n=n\left(n+1\right)=n\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\)
chia hết cho \(2,3,4,5.\)
b ) Cần chứng minh
\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1,n\in N\)*
là một số chính phương .
Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
Đặt : \(n^2+3n=y\) thì
\(A=y\left(y+2\right)+1=y^2+2y+1\left(y+1\right)^2\)
\(\Rightarrow A=\left(n^2+3n+1\right)^2,n\in N\)*
Đặt biểu thức là A. Ta có:
Tổng các số hạng của A là: 100-1+1=100 (số hạng)
Nhóm 4 số hạng liên tiếp với nhau được 25 nhóm như sau:
A = (3x+1+3x+2+3x+3+3x+4)+(3x+5+3x+6+3x+7+3x+8)+...+(3x+97+3x+98+3x+99+3x+100)
A = 3x(3+32+33+34)+3x+4(3+32+33+34)+...+3x+96(3+32+33+34) = (3+32+33+34)(3x+3x+4+...+3x+96)
=> A = 120.(3x+3x+4+...+3x+96)
=> A chia hết cho 120 với mọi x thuộc N
Câu 1:
\(=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{4n-1}-\dfrac{1}{4n+3}\right)\)
\(=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{4n+3}\right)\)
\(=\dfrac{5}{4}\cdot\dfrac{4n+3-3}{3\left(4n+3\right)}=\dfrac{5}{4}\cdot\dfrac{4n}{3\left(4n+3\right)}=\dfrac{5n}{3\left(4n+3\right)}\)
Câu 2:
\(=\dfrac{3}{5}\left(\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{5n-1}-\dfrac{1}{5n+4}\right)\)
\(=\dfrac{3}{5}\left(\dfrac{1}{9}-\dfrac{1}{5n+4}\right)\)
\(=\dfrac{3}{5}\cdot\dfrac{5n+4-9}{9\left(5n+4\right)}=\dfrac{3}{5}\cdot\dfrac{5\left(n-1\right)}{9\left(5n+4\right)}=\dfrac{n-1}{3\left(5n+4\right)}< \dfrac{1}{15}\)
a) Tự làm -.-
b) Ta có:
\(A=n^5-5n^3+4n=n.\left(n^4-5n^2+4\right)\)
\(A=n.\left(n^4-n^2-4n^2+4\right)\)
\(A=n.[n^2.\left(n^2-1\right)-4.\left(n^2-1\right)]\)
\(A=n.\left(n^2-1\right).\left(n^2-4\right)\)
\(A=n.\left(n-1\right).\left(n-1\right).\left(n-2\right).\left(n+2\right)\)
\(A=\left(n-2\right).\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\)
Vì \(n-2;n-2;n;n+1;n+2\) là tích của 5 số nguyên liên tiếp 3,5,8.
\(\Rightarrow\)\(A=\left(n-2\right).\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\) chia hết cho \(120\left(3.5.8\right)\)
Vậy \(n^5-5n^3+4n\) chia hết cho 120. ( đpcm )
Ta có
\(n^5-5n^3+4n=n\left(n^4-5n^2+4\right)=n\left(n^4-n^2-4n^2+4\right)\)
\(=n.\left(n^2\left(n^2-1\right)-4\left(n^2-1\right)\right)=n.\left(n^2-4\right)\left(n^2-1\right)\)
\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)là 5 số liên tiếp
=>chia hết cho 120
n5-5n3+4n=n5-4n3-n3+4n=n3(n2-4)-(n3-4n)=n3(n2-4)-n(n2-4)=(n3-n)(n2-4)
rồi bạn c/m 1 trong 2 thừa số chia hết cho 120