\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+......+\frac{2008}{3^{2008}}<\frac{3}{4}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2016
  • Đặt \(S=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2008}{3^{2008}}\)(1)
  • Ta có: \(\frac{1}{3}S=\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+...+\frac{2007}{3^{2008}}+\frac{2008}{3^{2009}}\)(2)
  • Trừ vế với vế 2 đửng thức (1) và (2) ta có:

\(S-\frac{1}{3}S=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}-\frac{2008}{3^{2009}}<\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)(3)

  • Đặt \(P=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)
  • \(\left(1-\frac{1}{3}\right)P=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}-\left(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2008}}+\frac{1}{3^{2009}}\right)=\frac{1}{3}-\frac{1}{3^{2009}}<\frac{1}{3}\)
  • \(\frac{2}{3}P<\frac{1}{3}\Rightarrow P<\frac{1}{2}\)(4)
  • Từ (3) và (4) 

\(\Rightarrow\frac{2}{3}S<\frac{1}{2}\Rightarrow S<\frac{3}{4}\)(ĐPCM)

19 tháng 4 2016

câu 2:đặt B=1/1*2+1/2*3+...+1/2007*2008

ta có:\(A=3\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\right)\)

\(\frac{A}{3}=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}

19 tháng 4 2016

câu 2:đặt B=1/1*2+1/2*3+...+1/2007*2008

\(A=3\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\right)\)

\(\frac{A}{3}=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\)\( (1)

\(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2007.2008}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}\)

\(=1-\frac{1}{2008}\)<1 (2)

mà 1<3 (3)

từ (1),(2) và (3)=> đpcm

17 tháng 9 2024

có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 +  2^10]

Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]

Q = 2 . 3+2^3 .3 +... + 2^9 .3

Q = 3. [ 2 + 2^3 +... + 2^9]

Vậy Q chia hết cho 3

19 tháng 10 2017

Ta có: \(A=\frac{2008+\frac{2007}{2}+\frac{2006}{3}+....+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)

Xét tử : \(2008+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)

\(=\left(1+1+...+1\right)+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)( có 2008 số hạng 1 )

\(=\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+...+\left(1+\frac{2}{2007}\right)+\left(1+\frac{1}{2008}\right)+1\)

\(=\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}+\frac{2009}{2009}\)

\(=2009\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)

Ghép tử và mẫu....

Vậy A = 2009

24 tháng 6 2015

tử là M mẫu là N ta dc

\(M=2008+\frac{2007}{2}+...+\frac{1}{2008}\)

       \(=\left(1+...+1\right)+\frac{2007}{2}+...+\frac{1}{2008}\)

       \(=\frac{2009}{2}+...+\frac{2009}{2008}+\frac{2009}{2009}\)

       \(=2009\left(\frac{1}{2}+...+\frac{1}{2008}+\frac{1}{2009}\right)\)

vậy ta có 

\(A=\frac{M}{N}=\frac{2009\left(\frac{1}{2}+...+\frac{1}{2008}+\frac{1}{2009}\right)}{\frac{1}{2}+...+\frac{1}{2008}+\frac{1}{2009}}\)\(=2009\)

 

28 tháng 9 2019

Tham khảo:

undefined

21 tháng 3 2017

a)\(\frac{5}{2}-3\left(\frac{1}{3}-x\right)=\frac{1}{4}-7x\)

\(\Leftrightarrow\frac{5}{2}-1+x=\frac{1}{4}-7x\)

\(\Leftrightarrow8x=-\frac{5}{4}\)

\(\Leftrightarrow x=-\frac{5}{32}\)

c)\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)

\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)

\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2003}\)

\(\Leftrightarrow x+1=2003\)

\(\Leftrightarrow x=2002\)

29 tháng 4 2016

E= \(\frac{1}{3}+\frac{2}{^{^{^{3^2}}}}+...+\frac{100}{^{3^{100}}}\)

3E=1 + \(\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

3E- E = 1+\(\left(\frac{2}{3}-\frac{1}{3}\right)+\left(\frac{3}{3^2}-\frac{2}{3^2}\right)+...+\left(\frac{100}{3^{99}}-\frac{99}{3^{99}}\right)-\frac{100}{3^{100}}\)

2E = 1 + \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)\(\frac{100}{3^{100}}\)

Đặt \(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)= C nên 2E < C(1)

Ta có 3C = \(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

3C - C = 2C = 3 - \(\frac{3}{3^{99}}\)nên 2C<3 nên C<\(\frac{3}{2}\)(2)

Từ (1) và (2) suy ra 2E<C<\(\frac{3}{2}\)hay 2E<\(\frac{3}{2}\)suy ra E<\(\frac{3}{2}:2=\frac{3}{4}\)(đpcm)

29 tháng 4 2016

3E= 1+2/3+3/32+...+100/399

 => 2E=3E-E =(1+1/3+1/32 +...+1/399)-100/3100

 CM biểu thức trong ngoặc < 3/2

7 tháng 7 2016
  • 1/2.2<1/1.2                     
  • 1/3.3<2.3 
  •         ... 
  •        1/1990.1990<1/1990.1989 
  • => 1/2^2+... +1/1990^2< 1/1.2+1/2.3+...+ 1/1990+1989 

=>1/2^2+...+1/1990^2<1/1990<3/4