Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a) Mik chữa lại một chút
Ta có: \(\frac{1}{2^2}< \frac{1}{1\cdot2}\); \(\frac{1}{3^2}< \frac{1}{2\cdot3}\);.......; \(\frac{1}{100^2}< \frac{1}{99\cdot100}\)
Suy ra: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)
Suy ra: \(VT< \frac{1}{1}-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy : \(VT+1< 1+1=2\)
Ta có :
\(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow4A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
Đặt 4A = C
\(\Rightarrow3C=3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow4C=3-\frac{1}{3^{99}}-\frac{100}{3^{100}}-\frac{100}{3^{99}}\)
\(\Rightarrow4C< 3\Rightarrow C< \frac{3}{4}\Rightarrow4A< \frac{3}{4}\Rightarrow A< \frac{3}{16}\left(đpcm\right)\)
B = \(\frac{1}{2.2}+\frac{1}{3.3}+....+\frac{1}{9.9}\)
ta có B > \(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}\) ( tự giải thích )
=> B > \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{9}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
=> B > \(\frac{2}{5}\) (1)
Ta có B < \(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{8.9}\)
=> B < \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)
=> B < \(\frac{8}{9}\) (2)
Từ (1) và (2) => \(\frac{2}{5}< B< \frac{8}{9}\)
Dễ thôi! Bạn chỉ việc tính tổng các phân số trên rồi lấy tử chia mẫu xem ra bao nhiêu! Rồi so sánh với 2 là biết ngay!
bài dễ ợt
gọi tổng là A
A=(1/63 - 1/2) : 1 + 1 (tính tổng)
A=65/126
Vì A <1 suy ra A<2
tk và mình mạnh vào nhé!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!11 x 1000000