\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2018

Đặt \(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

\(A=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)

\(2A=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)

\(2A+A=\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)

\(3A=1-\frac{1}{2^6}\)

\(3A=\frac{2^6-1}{2^6}\)

\(A=\frac{\frac{2^6-1}{2^6}}{3}< \frac{1}{3}\) 

Vậy \(A< 3\)

Chúc bạn học tốt ~ 

4 tháng 4 2018

Bạn Phùng Minh Quân ơi<3 cơ mà

19 tháng 3 2016

a)

\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-...-\frac{1}{64}=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-...-\frac{1}{2^6}=A\)

2A = 1 - \(\frac{1}{2}+\frac{1}{2^2}-...-\frac{1}{2^5}\)

2A + A = 1 - \(\frac{1}{2}+\frac{1}{2^2}-...-\frac{1}{2^5}+\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}-...-\frac{1}{2^6}\)

     3A  = \(1-\frac{1}{2^6}=\frac{2^6-1}{2^6}\)(đpcm)

22 tháng 3 2016

Đặt

A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

A = \(\frac{2}{4}-\frac{1}{4}+\frac{2}{16}-\frac{1}{16}+\frac{2}{64}-\frac{1}{64}\)

A = \(\frac{1}{4}+\frac{1}{16}+\frac{1}{64}\)

A = \(\frac{21}{64}\)

Vì  \(\frac{21}{64}<\frac{21}{63}\)

=>\(\frac{21}{64}<\frac{1}{3}\)

Hay \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{31}-\frac{1}{64}<\frac{1}{3}\)               (đpcm)

29 tháng 6 2017

Kết quả...

17 tháng 4 2020

                                                                                                                                                                                                                  

đọc tiếp...